The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM)
Autoři:
Valentina Ponzo aff001; Ilario Ferrocino aff002; Adriana Zarovska aff001; Maria Bernadette Amenta aff003; Filomena Leone aff003; Clara Monzeglio aff004; Rosalba Rosato aff005; Marianna Pellegrini aff001; Roberto Gambino aff001; Maurizio Cassader aff001; Ezio Ghigo aff001; Luca Cocolin aff002; Simona Bo aff001
Působiště autorů:
Department of Medical Sciences, University of Turin, Turin, Italy
aff001; Department of Agricultural, Forestry, and Food Science, University of Turin, Turin, Italy
aff002; Clinical Nutrition Unit, S. Anna Hospital, Città della Salute e della Scienza, Turin, Italy
aff003; Gynecology and Obstetrics Unit, S. Anna Hospital, Città della Salute e della Scienza, Turin, Italy
aff004; Department of Psychology, University of Turin, Turin, Italy
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226545
Souhrn
The microbiota composition of the offspring of women with gestational diabetes mellitus (GDM), a common pregnancy complication, is still little known. We investigated whether the GDM offspring gut microbiota composition is associated with the maternal nutritional habits, metabolic variables or pregnancy outcomes. Furthermore, we compared the GDM offspring microbiota to the microbiota of normoglycemic-mother offspring. Fecal samples of 29 GDM infants were collected during the first week of life and assessed by 16S amplicon-based sequencing. The offspring’s microbiota showed significantly lower α-diversity than the corresponding mothers. Earlier maternal nutritional habits were more strongly associated with the offspring microbiota (maternal oligosaccharide positively with infant Ruminococcus, maternal saturated fat intake inversely with infant Rikenellaceae and Ruminococcus) than last-trimester maternal habits. Principal coordinate analysis showed a separation of the infant microbiota according to the type of feeding (breastfeeding vs formula-feeding), displaying in breast-fed infants a higher abundance of Bifidobacterium. A few Bacteroides and Blautia oligotypes were shared by the GDM mothers and their offspring, suggesting a maternal microbial imprinting. Finally, GDM infants showed higher relative abundance of pro-inflammatory taxa than infants from healthy women. In conclusion, many maternal conditions impact on the microbiota composition of GDM offspring whose microbiota showed increased abundance of pro-inflammatory taxa.
Klíčová slova:
Pregnancy – Microbiome – Gut bacteria – Bifidobacterium – Bacteroides – Escherichia – Infants
Zdroje
1. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017; 81: e00036–17.
2. Chong CYL, Bloomfield FH, O’Sullivan JM. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. 2018; 10: 274.
3. Buchanan KL, Bohórquez DV. You are what you (first) eat. Front Hum Neurosci. 2018; 12: 1–7.
4. Gohir W, Ratcliffe EM, Sloboda DM. Of the bugs that shape us: Maternal obesity, the gut microbiome, and long-term disease risk. Pediatr Res. 2015; 77: 196–204. doi: 10.1038/pr.2014.169 25314580
5. Ficara M, Pietrella E, Spada C, Della Casa Muttini E, Lucaccioni L, Iughetti L, et al. Changes of intestinal microbiota in early life. J Matern Neonatal Med. 2018; 10: 1–8.
6. Soderborg TK, Clark SE, Mulligan CE, Janssen RC, Babcock L, Ir D, et al. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat Commun. 2018; 9: 4462. doi: 10.1038/s41467-018-06929-0 30367045
7. Guzzardi MA, Ait Ali L, D’Aurizio R, Rizzo F, Saggese P, Sanguinetti E, Weisz A, et al. Fetal cardiac growth is associated with in utero gut colonization. Nutr Metab Cardiovasc Dis. 2019; 29: 170–176. doi: 10.1016/j.numecd.2018.10.005 30579777
8. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017; 23: 314–326. doi: 10.1038/nm.4272 28112736
9. Rehbinder EM, Lødrup Carlsen KC, Staff AC, Angell IL, Landrø L, Hilde K, et al. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am J Obstet Gynecol. 2018; 219: 289.e1–289.e12.
10. Lim E, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome. 2018; 6: 87. doi: 10.1186/s40168-018-0475-7 29751830
11. Cassandra W. Baby’s first bacteria. Nature. 2018; 553: 264–266.
12. Chandler-Laney PC, Bush NC, Granger WM, Rouse DJ, Mancuso MS, Gower BA. Overweight status and intrauterine exposure to gestational diabetes are associated with children’s metabolic health. Pediatr Obes. 2012; 7: 44–52. doi: 10.1111/j.2047-6310.2011.00009.x 22308218
13. Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics. 2019; 14: 215–235. doi: 10.1080/15592294.2019.1582277 30865571
14. Dabelea D. The Predisposition to Obesity and Diabetes in Offspring of Diabetic Mothers. Diabetes Care. 2007; 30: S169–S174. doi: 10.2337/dc07-s211 17596467
15. Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018; 6: 89. doi: 10.1186/s40168-018-0472-x 29764499
16. Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut. 2018; 67: 1614–1625. doi: 10.1136/gutjnl-2018-315988 29760169
17. Ferrocino I, Ponzo V, Gambino R, Zarovska A, Leone F, Monzeglio C et al. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM). Sci Rep. 2018; 8: 12216. doi: 10.1038/s41598-018-30735-9 30111822
18. Kuang YS, Lu JH, Li SH, Li JH, Yuan MY, He JR, et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience. 2017; 6: 1–12.
19. Cortez RV, Taddei CR, Sparvoli LG, Ângelo AGS, Padilha M, Mattar R, et al. Microbiome and its relation to gestational diabetes. Endocrine. 2018, doi: 10.1007/s12020-018-1813-z 30421135 [Epub ahead of print].
20. Saad MJ, Santos A, Prada PO. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology. 2016; 31: 283–293. doi: 10.1152/physiol.00041.2015 27252163
21. Zhou L, Xiao X. The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Biosci Rep. 2018; 38: BSR20171234.
22. Koren O, Goodrich JK, Cullender TC, Spor AA, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2013; 150: 470–480.
23. Mokkala K, Houttu N, Vahlberg T, Munukka E, Rönnemaa T, Laitinen K. Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol. 2017; 54: 1147–1149. doi: 10.1007/s00592-017-1056-0 28980079
24. Hu J, Nomura Y, Bashir A, Fernandez-Hernandez H, Itzkowitz S, Pei Z, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One. 2013; 8: e78257. doi: 10.1371/journal.pone.0078257 24223144
25. Hasan S, Aho V, Pereira P, Paulin L, Koivusalo SB, Auvinen P, et al. Gut microbiome in gestational diabetes: a cross-sectional study of mothers and offspring 5 years postpartum. Acta Obstet Gynecol Scand. 2018; 97: 38–46. doi: 10.1111/aogs.13252 29077989
26. Su M, Nie Y, Shao R, Duan S, Jiang Y. Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS one. 2018; 13: e0205695. doi: 10.1371/journal.pone.0205695 30332459
27. Biagi E, Quercia S, Aceti A, Beghetti I, Rampelli S, Turroni S, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol. 2017; 8: 1214. doi: 10.3389/fmicb.2017.01214 28713343
28. Associazione Medici Diabetologi (AMD); Società Italiana di Diabetologia (SID). Standard Italiani per la Cura del Diabete 2018 (Italian). https://aemmedi.it/wp-content/uploads/2009/06/AMD-Standard-unico1.pdf
29. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013; 41: e1. doi: 10.1093/nar/gks808 22933715
30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7: 335–336. doi: 10.1038/nmeth.f.303 20383131
31. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol. 2013; 4: 1111–1119.
32. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015; 3: e1319. doi: 10.7717/peerj.1319 26500826
33. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003; 14: 927–930.
34. Chernikova DA, Koestler DC, Hoen AG, Housman ML, Hibberd PL, Moore JH, et al. Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med. 2016; 29: 99–105. doi: 10.3109/14767058.2014.987748 25394613
35. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016; 6: 23129. doi: 10.1038/srep23129 27001291
36. Del Chierico F, Vernocchi P, Petrucca A, Paci P, Fuentes S, Praticò G, et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS One. 2015; 10: e0137347. doi: 10.1371/journal.pone.0137347 26332837
37. Gosalbes MJ, Llop S, Vallès Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013; 43: 198–211. doi: 10.1111/cea.12063 23331561
38. Madan JC, Salari RC, Saxena D, Davidson L, O’Toole GA, Moore JH, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012; 97: F456–62. doi: 10.1136/fetalneonatal-2011-301373 22562869
39. Moles L.; Gómez M.; Heilig H.; Bustos G.; Fuentes S.; de Vos W.; Fernández L.; Rodríguez J.M.; Jiménez E. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One 2013, 8, e66986. doi: 10.1371/journal.pone.0066986 23840569
40. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015; 17: 690–703. doi: 10.1016/j.chom.2015.04.004 25974306
41. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486: 222–227. doi: 10.1038/nature11053 22699611
42. Yassour M.; Jason E.; Hogstrom L.J.; Arthur T.D.; Tripathi S.; Siljander H.; Selvenius J.; Oikarinen S.; Hyöty H.; Virtanen S.M.; et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 2018, 24, 146–154.e4. doi: 10.1016/j.chom.2018.06.007 30001517
43. Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014; 9: e90784. doi: 10.1371/journal.pone.0090784 24614698
44. Hornef M, Penders J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 2017; 10: 598–601. doi: 10.1038/mi.2016.141 28120852
45. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007; 56: 661–667. doi: 10.1136/gut.2006.100164 17047098
46. Mshvildadze M, Neu J, Shuster J, Theriaque D, Li N, Mai V. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr. 2010; 156: 20–25. doi: 10.1016/j.jpeds.2009.06.063 19783002
47. Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008; 159: 187–193. doi: 10.1016/j.resmic.2007.12.007 18281199
48. Hansen R, Scott KP, Khan S, Martin JC, Berry SH, Stevenson M, et al. First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS One. 2015; 10: e0133320. doi: 10.1371/journal.pone.0133320 26218283
49. Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010; 104: 83–92. doi: 10.1017/S0007114510000176 20205964
50. Cortez RV, Taddei CR, Sparvoli LG, Ângelo AGS, Padilha M, Mattar R, Daher S. Microbiome and its relation to gestational diabetes. Endocrine. 2019; 64: 254–264. doi: 10.1007/s12020-018-1813-z 30421135
51. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016; 59: 1396–1399. doi: 10.1007/s00125-016-3985-5 27174368
52. Damm P. Future risk of diabetes in mother and child after gestational diabetes mellitus. Int J Gynecol Obstet. 2009; 104: S25–S26.
53. Mandal S, Godfrey KM, McDonald D, Treuren WV, Bjørnholt JV, Midtvedt T, et al. Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome. 2016; 4: 55. doi: 10.1186/s40168-016-0200-3 27756413
54. Coppa GV, Gabrielli O, Zampini L, Galeazzi T, Ficcadenti A, Padella L, et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr 2011; 53: 80–87. doi: 10.1097/MPG.0b013e3182073103 21478759
55. Su XL, Tian Q, Zhang J, Yuan XZ, Shi XS, Guo RB, et al. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int J Syst Evol Microbiol. 2014; 64: 2986–2991. doi: 10.1099/ijs.0.063917-0 24899658
56. Lippert K, Kedenko L, Antonielli L, Kedenko I, Gemeier C, Leitner M, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes. 2017; 8: 545–556. doi: 10.3920/BM2016.0184 28701081
57. Ottosson F, Brunkwall L, Ericson U, Nilsson PM, Almgren P, Fernandez C, et al. Connection between BMI-related plasma metabolite profile and gut microbiota. J Clin Endocrinol Metab. 2018; 103: 1491–1501. doi: 10.1210/jc.2017-02114 29409054
58. Bo S, Menato G, Lezo A, Signorile A, Bardelli C, De Michieli F, et al. Dietary fat and gestational hyperglycaemia. Diabetologia. 2001; 44: 972–978. doi: 10.1007/s001250100590 11484073
59. Horan MK, Donnelly JM, McGowan CA, Gibney ER, McAuliffe FM. The association between maternal nutrition and lifestyle during pregnancy and 2-year-old offspring adiposity: analysis from the ROLO study. Zeitschrift Fur Gesundheitswissenschaften. 2016; 24: 427–436. doi: 10.1007/s10389-016-0740-9 27695668
60. Murrin C, Shrivastava A, Kelleher CC. Maternal macronutrient intake during pregnancy and 5 years postpartum and associations with child weight status aged five. Eur J Clin Nutr. 2013; 67: 670–679. doi: 10.1038/ejcn.2013.76 23612514
61. Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016; 8: 77. doi: 10.1186/s13073-016-0330-z 27503374
62. Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017; 12: 3–17. doi: 10.1111/ijpo.12217 28447406
63. Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol. 2017; 235: R1–R12. doi: 10.1530/JOE-17-0303 28751453
64. Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother ‘s weight on infant ‘s microbiota acquisition, composition, and activity during early infancy : a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010; 92: 1023–1030. doi: 10.3945/ajcn.2010.29877 20844065
65. Galley JD, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One. 2014; 9: e113026. doi: 10.1371/journal.pone.0113026 25409177
66. Russell SL, Gold MJ, Reynolds LA, Willing BP, Dimitriu P, Thorson L, et al. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J Allergy Clin Immunol. 2015; 135: 100–109.e5. doi: 10.1016/j.jaci.2014.06.027 25145536
67. Singh SB, Madan J, Coker M, Hoen A, Baker ER, Karagas MR, et al. Does birth mode modify associations of maternal pre-pregnancy BMI and gestational weight gain with the infant gut microbiome? Int J Obes. 2019, doi: 10.1038/s41366-018-0273-0 30765892 [Epub ahead of print].
68. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U. S. A. 2010; 107: 11971–11975. doi: 10.1073/pnas.1002601107 20566857
69. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016; 16: 86. doi: 10.1186/s12876-016-0498-0 27475754
70. Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015; 60: 825–833. doi: 10.1097/MPG.0000000000000752 25651488
71. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005; 51: 270–274. doi: 10.1007/s00284-005-0020-3 16187156
72. Korpela K, Salonen A, Hickman B, Kunz C, Sprenger N, Kukkonen K, et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci Rep. 2018; 8: 13757. doi: 10.1038/s41598-018-32037-6 30214024
73. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017; 171: 647–654. doi: 10.1001/jamapediatrics.2017.0378 28492938
74. Matsuyama M, Gomez-Arango LF, Fukuma NM, Morrison M, Davies PSW, Hill RJ. Breastfeeding: a key modulator of gut microbiota characteristics in late infancy. J Dev Orig Health Dis. 2019; 10: 206–213. doi: 10.1017/S2040174418000624 30451146
75. Lee SA, Lim JY, Kim BS, Cho SJ, Kim NY, Kim O, et al. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr Res Pract 2015; 9: 242–248. doi: 10.4162/nrp.2015.9.3.242 26060535
76. Grönlund MM, Gueimonde M, Laitinen K, Kociubinski G, Grönroos T, Salminen S, et al. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy. 2007; 37: 1764–1772. doi: 10.1111/j.1365-2222.2007.02849.x 17941914
77. Garrido D, Barile D, Mills DA. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr. 2012; 3: 415S–21S. doi: 10.3945/an.111.001586 22585920
78. Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, et al. Intestinal microbiota of 6-week-old infants across europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 2010; 51: 77–84. doi: 10.1097/MPG.0b013e3181d1b11e 20479681
79. Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS One. 2013; 8: e78331. doi: 10.1371/journal.pone.0078331 24244304
80. Barile D, Rastall RA. Human milk and related oligosaccharides as prebiotics. Curr Opin Biotechnol. 2013; 24: 214–219. doi: 10.1016/j.copbio.2013.01.008 23434179
81. American Academy Of Pediatrics. Breastfeeding and the use of human milk. Pediatrics. 2012; 129: e827–41. doi: 10.1542/peds.2011-3552 22371471
82. Lee SA, Lim JY, Kim BS, Cho SJ, Kim NY, Kim OB, Kim Y. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr Res Pract. 2015; 9: 242–248. doi: 10.4162/nrp.2015.9.3.242 26060535
83. Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018; 9: 4169. doi: 10.1038/s41467-018-06473-x 30301893
84. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018; 24: 133–145.e5. doi: 10.1016/j.chom.2018.06.005 30001516
85. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017; 2: e00164–16. doi: 10.1128/mSystems.00164-16 28144631
86. Turroni F, Foroni E, Serafini F, Viappiani A, Montanini B, Bottacini F, et al. Ability of Bifidobacterium breve to grow on different types of milk: exploring the metabolism of milk through genome analysis. Appl Environ Microbiol. 2011; 77: 7408–7417. doi: 10.1128/AEM.05336-11 21856831
87. Murphy K, Curley D, O’callaghan TF, O’shea CA, Dempsey EM, O’toole PW, et al. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci Rep. 2017; 7: 40597. doi: 10.1038/srep40597 28094284
88. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010; 58: 5334–5340. doi: 10.1021/jf9044205 20394371
89. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015; 3: 13. doi: 10.1186/s40168-015-0071-z 25922665
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Profylaxe infekční endokarditidy ve stomatologii
- Léčba uroinfekcí v primární péči z pohledu bakteriální rezistence – význam nifuratelu