#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effects of the killer immunoglobulin–like receptor (KIR) polymorphisms on HIV acquisition: A meta-analysis


Autoři: Suwit Chaisri aff001;  Noel Pabalan aff001;  Sompong Tabunhan aff001;  Phuntila Tharabenjasin aff001;  Nipaporn Sankuntaw aff001;  Chanvit Leelayuwat aff002
Působiště autorů: Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand aff001;  The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand aff002;  Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225151

Souhrn

Background

Genetic involvement of Killer Immunoglobulin-like Receptor (KIR) polymorphisms and Human Immunodeficiency Virus (HIV)-exposed seronegative (HESN) compared to HIV-infected (HIVI) individuals has been reported. However, inconsistency of the outcomes reduces precision of the estimates. A meta-analysis was applied to obtain more precise estimates of association.

Methods

A multi-database literature search yielded thirteen case-control studies. Risks were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at a two-tailed P-value of ≤ 0.05. We used two levels of analyses: (1) gene content that included 13 KIR polymorphisms (2DL1-3, 2DL5A, 2DL5B, 2DS1-3, 2DS4F, 2DS4D, 2DS5, 3DL1 and 3DS1); and (2) 3DL1/S1 genotypes. Subgroup analysis was ethnicity-based (Caucasians, Asians and Africans). Outlier treatment was applied to heterogeneous effects which dichotomized the outcomes into pre-outlier (PRO) and post-outlier (PSO). Multiple comparisons were addressed with the Bonferroni correction.

Results

We generated 52 and 18 comparisons from gene content and genotype analyses, respectively. Of the 70 comparisons, 13 yielded significant outcomes, two (indicating reduced risk) of which survived the Bonferroni correction (Pc). These protective effects pointed to the Caucasian subgroup in 2DL3 (OR 0.19, 95% CI 0.09, 0.40, Pc < 10−3) and 3DS1S1 (OR 0.37, 95% CI 0.24, 0.56, Pc < 10−3). These two PSO outcomes yielded effects of increased magnitude and precision, as well as raised significance and deemed robust by sensitivity analysis. Of the two, the 2DL3 effect was improved with a test of interaction (Pc interaction < 10−4).

Conclusion

Multiple meta-analytical treatments presented strong evidence of the protective effect (up to 81%) of the KIR polymorphisms (2DL3 and 3DS1S1) among Caucasians. The Asian and African outcomes were inconclusive due to the low number of studies.

Klíčová slova:

Genome-wide association studies – HIV infections – African people – Variant genotypes – Genetic polymorphism – NK cells


Zdroje

1. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. Epub 1989/01/01. doi: 10.1016/s0065-2776(08)60664-1 2683611.

2. Biron CA, Brossay L. NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol. 2001;13(4):458–64. Epub 2001/08/11. doi: 10.1016/s0952-7915(00)00241-7 11498302.

3. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40. Epub 2001/11/08. doi: 10.1016/s1471-4906(01)02060-9 11698225.

4. Chaisri S, Traherne JA, Jayaraman J, Romphruk A, Trowsdale J, Leelayuwat C. Novel KIR genotypes and gene copy number variations in northeastern Thais. Immunology. 2017. Epub 2017/09/28. doi: 10.1111/imm.12847 28950036.

5. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7(6):753–63. Epub 1998/01/16. doi: 10.1016/s1074-7613(00)80394-5 9430221.

6. Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D, et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci U S A. 2000;97(9):4778–83. Epub 2000/04/26. doi: 10.1073/pnas.080588597 10781084.

7. Gonzalez-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43(Database issue):D784–8. Epub 2014/11/22. doi: 10.1093/nar/gku1166 25414323.

8. Jiang W, Johnson C, Simecek N, Lopez-Alvarez MR, Di D, Trowsdale J, et al. qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination. Genome Med. 2016;8(1):99. Epub 2016/10/01. doi: 10.1186/s13073-016-0358-0 27686127.

9. Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human disease. Semin Immunol. 2008;20(6):343–52. doi: 10.1016/j.smim.2008.06.003 18635379.

10. Chavan VR, Ansari Z, Mehta P, Mania-Pramanik J. Distribution of killer immunoglobulin-like receptor genes in HIV infected long-term non-progressors from Mumbai, India. Indian J Dermatol Venereol Leprol. 2018;84(2):247. doi: 10.4103/ijdvl.IJDVL_518_16 29327701.

11. Maruthamuthu S, Rajalingam R, Pandian K, Madasamy S, Manoharan M, Pitchai L, et al. Inhibitory natural killer cell receptor KIR3DL1 with its ligand Bw4 constraints HIV-1 disease among South Indians. AIDS. 2018;32(18):2679–88. doi: 10.1097/QAD.0000000000002028 30289808.

12. Wang L, Zhang Y, Xu K, Dong T, Rowland-Jones S, Yindom LM. Killer-cell immunoglobulin-like receptors associate with HIV-1 infection in a narrow-source Han Chinese cohort. PLoS One. 2018;13(4):e0195452. doi: 10.1371/journal.pone.0195452 29664957.

13. Norman PJ, Abi-Rached L, Gendzekhadze K, Korbel D, Gleimer M, Rowley D, et al. Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans. Nat Genet. 2007;39(9):1092–9. Epub 2007/08/19. doi: 10.1038/ng2111 17694054.

14. Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. J Immunol. 2011;187(1):11–9. Epub 2011/06/22. doi: 10.4049/jimmunol.0902332 21690332.

15. Alter G, Rihn S, Walter K, Nolting A, Martin M, Rosenberg ES, et al. HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol. 2009;83(13):6798–805. Epub 2009/04/24. doi: 10.1128/JVI.00256-09 19386717.

16. Barbour JD, Sriram U, Caillier SJ, Levy JA, Hecht FM, Oksenberg JR. Synergy or independence? Deciphering the interaction of HLA Class I and NK cell KIR alleles in early HIV-1 disease progression. PLoS Pathog. 2007;3(4):e43. Epub 2007/04/24. doi: 10.1371/journal.ppat.0030043 17447840.

17. Martin MP, Gao XJ, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature Genetics. 2002;31(4):429–34. doi: 10.1038/ng934 12134147

18. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet. 2007;39(6):733–40. Epub 2007/05/15. doi: 10.1038/ng2035 17496894.

19. Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol. 2011;164(2):158–69. Epub 2011/03/19. doi: 10.1111/j.1365-2249.2011.04379.x 21413945.

20. Boulet S, Kleyman M, Kim JY, Kamya P, Sharafi S, Simic N, et al. A combined genotype of KIR3DL1 high expressing alleles and HLA-B*57 is associated with a reduced risk of HIV infection. AIDS. 2008;22(12):1487–91. Epub 2008/07/11. doi: 10.1097/QAD.0b013e3282ffde7e 18614872.

21. Pelak K, Need AC, Fellay J, Shianna KV, Feng S, Urban TJ, et al. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol. 2011;9(11):e1001208. doi: 10.1371/journal.pbio.1001208 22140359.

22. Vince N, Bashirova AA, Lied A, Gao X, Dorrell L, McLaren PJ, et al. HLA class I and KIR genes do not protect against HIV type 1 infection in highly exposed uninfected individuals with hemophilia A. Journal of Infectious Diseases. 2014;210(7):1047–51. Epub 2014/04/11. doi: 10.1093/infdis/jiu214 24719475.

23. Clark MF, Baudouin SV. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med. 2006;32(11):1706–12. Epub 2006/09/08. doi: 10.1007/s00134-006-0327-y 16957907.

24. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med. 1997;127(9):820–6. Epub 1998/02/12. doi: 10.7326/0003-4819-127-9-199711010-00008 9382404.

25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. Epub 2002/07/12. doi: 10.1002/sim.1186 12111919.

26. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. Epub 1986/09/01. doi: 10.1016/0197-2456(86)90046-2 3802833.

27. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48. Epub 1959/04/01. 13655060.

28. Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 1988;7(8):889–94. Epub 1988/08/01. doi: 10.1002/sim.4780070807 3413368.

29. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326(7382):219. doi: 10.1136/bmj.326.7382.219 12543843.

30. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. Epub 2003/09/06. doi: 10.1136/bmj.327.7414.557 12958120.

31. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. Cmaj. 2007;176(8):1091–6. doi: 10.1503/cmaj.060410 17420491.

32. Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012;10(2):486–9. doi: 10.5812/ijem.3505 23843808.

33. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 19621072.

34. Jennes W, Verheyden S, Demanet C, Adje-Toure CA, Vuylsteke B, Nkengasong JN, et al. Cutting edge: resistance to HIV-1 infection among African female sex workers is associated with inhibitory KIR in the absence of their HLA ligands. J Immunol. 2006;177(10):6588–92. Epub 2006/11/04. doi: 10.4049/jimmunol.177.10.6588 17082569.

35. Merino A, Malhotra R, Morton M, Mulenga J, Allen S, Hunter E, et al. Impact of a functional KIR2DS4 allele on heterosexual HIV-1 transmission among discordant Zambian couples. Journal of Infectious Diseases. 2011;203(4):487–95. Epub 2011/01/11. doi: 10.1093/infdis/jiq075 21216870.

36. Koehler RN, Alter G, Tovanabutra S, Saathoff E, Arroyo MA, Walsh AM, et al. Natural killer cell-mediated innate sieve effect on HIV-1: the impact of KIR/HLA polymorphism on HIV-1 subtype-specific acquisition in east Africa. Journal of Infectious Diseases. 2013;208(8):1250–4. Epub 2013/08/08. doi: 10.1093/infdis/jit349 23922366.

37. Naranbhai V, de Assis Rosa D, Werner L, Moodley R, Hong H, Kharsany A, et al. Killer-cell Immunoglobulin-like Receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infect Dis. 2016;16:27. Epub 2016/01/27. doi: 10.1186/s12879-016-1361-1 26809736.

38. Chavan VR, Chaudhari D, Ahir S, Ansari Z, Mehta P, Mania-Pramanik J. Variations in KIR genes: a study in HIV-1 serodiscordant couples. BioMed research international. 2014;2014:891402. Epub 2014/05/31. doi: 10.1155/2014/891402 24877146.

39. Mori M, Wichukchinda N, Miyahara R, Rojanawiwat A, Pathipvanich P, Tsuchiya N, et al. The effect of KIR2D-HLA-C receptor-ligand interactions on clinical outcome in a HIV-1 CRF01_AE-infected Thai population. AIDS. 2015;29(13):1607–15. Epub 2015/09/16. doi: 10.1097/QAD.0000000000000747 26372271.

40. Boulet S, Sharafi S, Simic N, Bruneau J, Routy JP, Tsoukas CM, et al. Increased proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals. AIDS. 2008;22(5):595–9. Epub 2008/03/05. doi: 10.1097/QAD.0b013e3282f56b23 18317000.

41. Guerini FR, Lo Caputo S, Gori A, Bandera A, Mazzotta F, Uglietti A, et al. Under Representation of the Inhibitory KIR3DL1 Molecule and the KIR3DL1+/BW4+ Complex in HIV Exposed Seronegative Individuals. Journal of Infectious Diseases. 2011;203(9):1235–9. doi: 10.1093/infdis/jir020 21398398

42. Habegger de Sorrentino A, Sinchi JL, Marinic K, Lopez R, Iliovich E. KIR-HLA-A and B alleles of the Bw4 epitope against HIV infection in discordant heterosexual couples in Chaco Argentina. Immunology. 2013;140(2):273–9. Epub 2013/06/25. doi: 10.1111/imm.12137 23789883.

43. Tallon BJ, Bruneau J, Tsoukas CM, Routy JP, Kiani Z, Tan X, et al. Time to seroconversion in HIV-exposed subjects carrying protective versus non protective KIR3DS1/L1 and HLA-B genotypes. PLoS One. 2014;9(10):e110480. Epub 2014/10/21. doi: 10.1371/journal.pone.0110480 25330014.

44. Zwolinska K, Blachowicz O, Tomczyk T, Knysz B, Gasiorowski J, Zalewska M, et al. The effects of killer cell immunoglobulin-like receptor (KIR) genes on susceptibility to HIV-1 infection in the Polish population. Immunogenetics. 2016;68(5):327–37. Epub 2016/02/19. doi: 10.1007/s00251-016-0906-1 26888639.

45. Jackson E, Zhang CX, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS One. 2017;12(9):e0185160. Epub 2017/09/25. doi: 10.1371/journal.pone.0185160 28938026.

46. Rallon N, Restrepo C, Vicario JL, Del Romero J, Rodriguez C, Garcia-Samaniego J, et al. Human leucocyte antigen (HLA)-DQB1*03:02 and HLA-A*02:01 have opposite patterns in their effects on susceptibility to HIV infection. HIV medicine. 2017. doi: 10.1111/hiv.12494 28218480.

47. Jackson E, Zhang CX, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PloS one. 2017;12(9):e0185160. doi: 10.1371/journal.pone.0185160 28938026.

48. Korner C, Altfeld M. Role of KIR3DS1 in human diseases. Front Immunol. 2012;3:326. Epub 2012/11/06. doi: 10.3389/fimmu.2012.00326 23125843.

49. Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A, et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med. 2007;204(12):3027–36. Epub 2007/11/21. doi: 10.1084/jem.20070695 18025129.

50. Carr WH, Rosen DB, Arase H, Nixon DF, Michaelsson J, Lanier LL. Cutting Edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J Immunol. 2007;178(2):647–51. doi: 10.4049/jimmunol.178.2.647 17202323.

51. Zipperlen K, Gallant M, Stapleton S, Heath J, Barrett L, Grant M. Protective genotypes in HIV infection reflect superior function of KIR3DS1+ over KIR3DL1+ CD8+ T cells. Immunol Cell Biol. 2015;93(1):67–76. doi: 10.1038/icb.2014.68 25112829.

52. Long BR, Ndhlovu LC, Oksenberg JR, Lanier LL, Hecht FM, Nixon DF, et al. Conferral of enhanced natural killer cell function by KIR3DS1 in early human immunodeficiency virus type 1 infection. J Virol. 2008;82(10):4785–92. Epub 2008/02/29. doi: 10.1128/JVI.02449-07 18305035.

53. Garcia-Beltran WF, Holzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17(9):1067–74. doi: 10.1038/ni.3513 27455421.

54. Liang HL, Ma SJ, Tan HZ. Association between killer cell immunoglobulin-like receptor (KIR) polymorphisms and systemic lupus erythematosus (SLE) in populations: A PRISMA-compliant meta-analysis. Medicine (Baltimore). 2017;96(10):e6166. doi: 10.1097/MD.0000000000006166 28272205.

55. Li X, Xia Q, Fan D, Cai G, Yang X, Wang L, et al. Association between KIR gene polymorphisms and rheumatoid arthritis susceptibility: A meta-analysis. Hum Immunol. 2015;76(8):565–70. doi: 10.1016/j.humimm.2015.06.017 26187163.

56. Liu SL, Zheng AJ, Ding L. Association between KIR gene polymorphisms and type 1 diabetes mellitus (T1DM) susceptibility: A PRISMA-compliant meta-analysis. Medicine (Baltimore). 2017;96(52):e9439. doi: 10.1097/MD.0000000000009439 29384924.

57. Shahsavar F, Mapar S, Ahmadi SA. Multiple sclerosis is accompanied by lack of KIR2DS1 gene: A meta-analysis. Genom Data. 2016;10:75–8. doi: 10.1016/j.gdata.2016.09.009 27747156.

58. Gauthiez E, Habfast-Robertson I, Rueger S, Kutalik Z, Aubert V, Berg T, et al. A systematic review and meta-analysis of HCV clearance. Liver Int. 2017;37(10):1431–45. doi: 10.1111/liv.13401 28261910.

59. Limou S, Zagury JF. Immunogenetics: Genome-Wide Association of Non-Progressive HIV and Viral Load Control: HLA Genes and Beyond. Front Immunol. 2013;4:118. doi: 10.3389/fimmu.2013.00118 23750159.

60. Anokhin VV, Bakhteeva LB, Khasanova GR, Khaiboullina SF, Martynova EV, Tillett RL, et al. Previously Unidentified Single Nucleotide Polymorphisms in HIV/AIDS Cases Associate with Clinical Parameters and Disease Progression. BioMed research international. 2016;2016:2742648. doi: 10.1155/2016/2742648 28050553.

61. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317(5840):944–7. doi: 10.1126/science.1143767 17641165.

62. Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clinical microbiology reviews. 2009;22(2):370–85, Table of Contents. doi: 10.1128/CMR.00048-08 19366919.

63. McLaren PJ, Carrington M. The impact of host genetic variation on infection with HIV-1. Nat Immunol. 2015;16(6):577–83. doi: 10.1038/ni.3147 25988890.

64. Bashirova AA, Thomas R, Carrington M. HLA/KIR restraint of HIV: surviving the fittest. Annual review of immunology. 2011;29:295–317. doi: 10.1146/annurev-immunol-031210-101332 21219175.

65. Zulfiqar HF, Javed A, Sumbal, Afroze B, Ali Q, Akbar K, et al. HIV Diagnosis and Treatment through Advanced Technologies. Frontiers in public health. 2017;5:32. doi: 10.3389/fpubh.2017.00032 28326304.

66. Martin MP, Carrington M. Immunogenetics of HIV disease. Immunological reviews. 2013;254(1):245–64. doi: 10.1111/imr.12071 23772624.

67. Pyo CW, Wang R, Vu Q, Cereb N, Yang SY, Duh FM, et al. Recombinant structures expand and contract inter and intragenic diversification at the KIR locus. BMC genomics. 2013;14:89. doi: 10.1186/1471-2164-14-89 23394822.


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#