Rapid pathogen identification and antimicrobial susceptibility testing in in vitro endophthalmitis with matrix assisted laser desorption-ionization Time-of-Flight Mass Spectrometry and VITEK 2 without prior culture

Autoři: Lindsay Y. Chun aff001;  Laura Dolle-Molle aff002;  Cindy Bethel aff002;  Rose C. Dimitroyannis aff001;  Blake L. Williams aff001;  Sidney A. Schechet aff001;  Seenu M. Hariprasad aff001;  Dominique Missiakas aff003;  Olaf Schneewind aff003;  Kathleen G. Beavis aff002;  Dimitra Skondra aff001
Působiště autorů: Department of Ophthalmology and Visual Science, The University of Chicago Hospitals and Health System, Chicago, Illinois, United States of America aff001;  Clinical Microbiology Laboratory, The University of Chicago Hospitals and Health System, Chicago, Illinois, United States of America aff002;  Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America aff003;  Department of Pathology, The University of Chicago Hospitals and Health System, Chicago, Illinois, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227071



Prompt clinical diagnosis and initiation of treatment are critical in the management of infectious endophthalmitis. Current methods used to identify causative agents of infectious endophthalmitis are mostly inefficient, owing to suboptimal sensitivity, length, and cost. Matrix Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) can be used to rapidly identity pathogens without a need for culture. Similarly, automated antimicrobial susceptibility test systems (AST, VITEK 2) provide accurate antimicrobial susceptibility profiles. In this proof-of-concept study, we apply these technologies for the direct identification and characterization of pathogens in vitreous samples, without culture, as an in vitro model of infectious endophthalmitis.


Vitreous humor aspirated from freshly enucleated porcine eyes was inoculated with different inocula of Staphylococcus aureus (S. aureus) and incubated at 37°C. Vitreous endophthalmitis samples were centrifuged and pellets were directly analyzed with MALDI-TOF MS and VITEK 2 without prior culture. S. aureus colonies that were conventionally grown on culture medium were used as control samples. Time-to-identification, minimum concentration of bacteria required for identification, and accuracy of results compared to standard methods were determined.


MALDI-TOF MS achieved accurate pathogen identification from direct analysis of intraocular samples with confidence values of up to 99.9%. Time from sample processing to pathogen identification was <30 minutes. The minimum number of bacteria needed for positive identification was 7.889x106 colony forming units (cfu/μl). Direct analysis of intraocular samples with VITEK 2 gave AST profiles that were up to 94.4% identical to the positive control S. aureus analyzed per standard protocol.


Our findings demonstrate that the direct analysis of vitreous samples with MALDI-TOF MS and VITEK 2 without prior culture could serve as new, improved methods for rapid, accurate pathogen identification and targeted treatment design in infectious endophthalmitis. In vivo models and standardized comparisons against other microbiological methods are needed to determine the value of direct analysis of intraocular samples from infectious endophthalmitis with MALDI-TOF MS and VITEK 2.

Klíčová slova:

Antibiotics – Antimicrobial resistance – Bacterial pathogens – Cataract surgery – Eyes – Matrix-assisted laser desorption ionization time-of-flight mass spectrometry – Pathogens – Staphylococcus aureus


1. Durand ML. Endophthalmitis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2013 Mar;19(3):227–34.

2. Sheu S-J. Endophthalmitis. Korean J Ophthalmol. 2017;31(4):283–289. doi: 10.3341/kjo.2017.0036 28752698

3. Vaziri K, Kishor K, Schwartz SG, Maharaj AS, Moshfeghi DM, Moshfeghi AA, et al. Incidence of bleb-associated endophthalmitis in the United States. Clin Ophthalmol Auckl NZ. 2015;9:317–22.

4. Durand ML. Bacterial and Fungal Endophthalmitis. Clin Microbiol Rev. 2017;30(3):597–613. doi: 10.1128/CMR.00113-16 28356323

5. Ma W-J, Zhang H, Zhao S-Z. Laboratory diagnosis of infectious endophthalmitis. Int J Ophthalmol. 2011;4(1):100–2. doi: 10.3980/j.issn.2222-3959.2011.01.23 22553620

6. Sharma S, Jalali S, Adiraju MV, Gopinathan U, Das T. Sensitivity and predictability of vitreous cytology, biopsy, and membrane filter culture in endophthalmitis. Retina Phila Pa. 1996;16(6):525–9.

7. Sjoholm-Gomez de Liano C, Soberon-Ventura VF, Salcedo-Villanueva G, Santos-Palacios A, Guerrero-Naranjo JL, Fromow-Guerra J, et al. Sensitivity, specificity and predictive values of anterior chamber tap in cases of bacterial endophthalmitis. Eye Vis Lond Engl. 2017;4:18.

8. Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis. 2014 May;6(5):534–8. doi: 10.3978/j.issn.2072-1439.2014.02.18 24822115

9. Relhan N, Forster RK, Flynn HW. Endophthalmitis: Then and Now. Am J Ophthalmol. 2018 Mar;187:xx–xxvii. doi: 10.1016/j.ajo.2017.11.021 29217351

10. Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial Resistance. JAMA. 2016 Sep 20;316(11):1193–204. doi: 10.1001/jama.2016.11764 27654605

11. Astley RA, Coburn PS, Parkunan SM, Callegan MC. Modeling intraocular bacterial infections. Prog Retin Eye Res. 2016;54:30–48. doi: 10.1016/j.preteyeres.2016.04.007 27154427

12. Piczenik Y, Kjer B, Fledelius HC. Metastatic bacterial endophthalmitis. A report of four cases all leading to blindness. Acta Ophthalmol Scand. 1997 Aug;75(4):466–9. doi: 10.1111/j.1600-0420.1997.tb00416.x 9374263

13. Lévesque S, Dufresne PJ, Soualhine H, Domingo M-C, Bekal S, Lefebvre B, et al. A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory. PloS One. 2015;10(12):e0144878. doi: 10.1371/journal.pone.0144878 26658918

14. Segawa S, Sawai S, Murata S, Nishimura M, Beppu M, Sogawa K, et al. Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis. Clin Chim Acta Int J Clin Chem. 2014 Aug 5;435:59–61.

15. Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods. 2017;138:20–9. doi: 10.1016/j.mimet.2016.09.003 27613479

16. Ling TKW, Liu ZK, Cheng AFB. Evaluation of the VITEK 2 system for rapid direct identification and susceptibility testing of gram-negative bacilli from positive blood cultures. J Clin Microbiol. 2003 Oct;41(10):4705–7. doi: 10.1128/JCM.41.10.4705-4707.2003 14532207

17. Bobenchik AM, Hindler JA, Giltner CL, Saeki S, Humphries RM. Performance of Vitek 2 for antimicrobial susceptibility testing of Staphylococcus spp. and Enterococcus spp. J Clin Microbiol. 2014 Feb;52(2):392–7. doi: 10.1128/JCM.02432-13 24478467

18. Bitew A, Molalign T, Chanie M. Species distribution and antibiotic susceptibility profile of bacterial uropathogens among patients complaining urinary tract infections. BMC Infect Dis. 2017 29;17(1):654. doi: 10.1186/s12879-017-2743-8 28962545

19. Relhan N, Albini TA, Pathengay A, Kuriyan AE, Miller D, Flynn HW. Endophthalmitis caused by Gram-positive organisms with reduced vancomycin susceptibility: literature review and options for treatment. Br J Ophthalmol. 2016 Apr;100(4):446–52. doi: 10.1136/bjophthalmol-2015-307722 26701686

20. Mailhac A, Durand H, Boisset S, Maubon D, Berger F, Maurin M, et al. MALDI-TOF mass spectrometry for rapid diagnosis of postoperative endophthalmitis. J Proteomics. 2017 30;152:150–2. doi: 10.1016/j.jprot.2016.10.017 27989942

21. Shah CP, Garg SJ, Vander JF, Brown GC, Kaiser RS, Haller JA, et al. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmology. 2011 Oct;118(10):2028–34. doi: 10.1016/j.ophtha.2011.02.034 21705087

22. Dossarps D, Bron AM, Koehrer P, Aho-Glélé LS, Creuzot-Garcher C, Berthon L, et al. Endophthalmitis After Intravitreal Injections: Incidence, Presentation, Management, and Visual Outcome. Am J Ophthalmol. 2015 Jul;160(1):17–25.e1. doi: 10.1016/j.ajo.2015.04.013 25892127

23. Tanaka T, Oliveira LM de F, Ferreira BF de A, Kato JM, Rossi F, Correa K de LG, et al. BactecTM blood culture bottles allied to MALDI-TOF mass spectrometry: rapid etiologic diagnosis of bacterial endophthalmitis. Diagn Microbiol Infect Dis. 2017 Jul;88(3):222–4. doi: 10.1016/j.diagmicrobio.2017.04.008 28483305

24. Taban M, Behrens A, Newcomb RL, Nobe MY, Saedi G, Sweet PM, et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol Chic Ill 1960. 2005 May;123(5):613–20.

25. Martin DF. Evolution of Intravitreal Therapy for Retinal Diseases—From CMV to CNV: The LXXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2018 Jul;191:xli–lviii. doi: 10.1016/j.ajo.2017.12.019 29339063

26. Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina Phila Pa. 2009 Aug;29(7):875–912.

27. Jones DB. Emerging vancomycin resistance: what are we waiting for? Arch Ophthalmol Chic Ill 1960. 2010 Jun;128(6):789–91.

28. Shivaramaiah HS, Relhan N, Pathengay A, Mohan N, Flynn HW. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: Clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am J Ophthalmol Case Rep. 2018 Jun;10:211–4. doi: 10.1016/j.ajoc.2018.02.030 29552670

29. Durand ML. Microbiologic factors and visual outcome in the endophthalmitis vitrectomy study. Am J Ophthalmol. 1996 Dec;122(6):830–46. doi: 10.1016/s0002-9394(14)70380-0 8956638

30. Dave VP, Pathengay A, Relhan N, Sharma P, Jalali S, Pappuru RR, et al. Endophthalmitis and Concurrent or Delayed-Onset Rhegmatogenous Retinal Detachment Managed With Pars Plana Vitrectomy, Intravitreal Antibiotics, and Silicone Oil. Ophthalmic Surg Lasers Imaging Retina. 2017 01;48(7):546–51. doi: 10.3928/23258160-20170630-05 28728182

31. Doft BM, Kelsey SF, Wisniewski SR. Retinal detachment in the endophthalmitis vitrectomy study. Arch Ophthalmol Chic Ill 1960. 2000 Dec;118(12):1661–5.

32. Íñigo M, Coello A, Fernández-Rivas G, Rivaya B, Hidalgo J, Quesada MD, et al. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2016 Apr;54(4):988–93. doi: 10.1128/JCM.02832-15 26818668

33. Chun LY, Molle LD, Schneewind O, Missiakas D, Beavis KG, Skondra D. Rapid Pathogen Identification With Direct Application of MALDI-TOF Mass Spectrometry on an Endophthalmitis Vitreous Sample Without Prior Culture. J Vitreoretin Dis. 2019 Jul;3(4):255–9.

Článok vyšiel v časopise


2019 Číslo 12