Leishmania amazonensis resistance in murine macrophages: Analysis of possible mechanisms


Autoři: Sandy Santos-Pereira aff001;  Flávia O. Cardoso aff001;  Kátia S. Calabrese aff001;  Tânia Zaverucha do Valle aff001
Působiště autorů: Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226837

Souhrn

Leishmaniasis encompass a group of infectious parasitic diseases occurring in 97 endemic countries where over one billion people live in areas at risk of infection. It is in the World Health Organization list of neglected diseases and it is considered a serious public health problem, with more than 20,000 deaths a year and high morbidity. Infection by protozoa from the genus Leishmania can cause several forms of the disease, which may vary from a self-healing ulcer to fatal visceral infection. Leishmania species, as well as host immune response and genetics can modulate the course of the disease. Leishmania sp are obligatory intracellular parasites that have macrophages as their main host cell. Depending on the activation phenotype, these cells may have distinct roles in disease development, acting in parasite control or proliferation. Therefore, the purpose of this work was to analyze Leishmania amazonensis infection in primary macrophage cells obtained from mice with two distinct genetic backgrounds, ie. different susceptibility to the infection; evaluating the cause for that difference. After infection, peritoneal macrophages from the resistant C3H/He strain presented lower parasite load when compared to susceptible BALB/c macrophages. The same was also true when cells received a Th2 stimulus after infection, but the difference was abrogated under Th1 stimulus. Nitric oxide production and arginase activity was different between the strains under Th1 or Th2 stimulus, respectively, but iNOS inhibition was unable to suppress C3H/He resistance. Hydrogen peroxide production was also higher in C3H/He than BALB/c under Th1 stimulus, but it could not account for differences in susceptibility. These results led us to conclude that, although they have an important role in parasite control, neither NO nor H2O2 production can explain C3H/He resistance to infection. Other studies are needed to uncover different mechanisms of resistance/susceptibility to L. amazonensis.

Klíčová slova:

Immune response – Respiratory infections – Parasitic diseases – Macrophages – Protozoan infections – Nitric oxide – Leishmania – Amastigotes


Zdroje

1. WHO WHO. Leishmaniasis [Internet]. 2019;

2. Organização Pan-Americana da Saúde. Informe Epidemiológico das Américas. Leishmanioses. Informe de Leishmanioses No 5. 2017.:8.

3. Basano S de A, Camargo LMA. Leishmaniose tegumentar americana: histórico, epidemiologia e perspectivas de controle. Vol. 7, Revista Brasileira de Epidemiologia. 2004.7(3):328–37.

4. McGwire BS, Satoskar AR. Leishmaniasis: clinical syndromes and treatment. Vol. 107, QJM: monthly journal of the Association of Physicians. 2014.107(1):7–14. doi: 10.1093/qjmed/hct116 23744570

5. Horta MF, Mendes BP, Roma EH, Noronha FSM, MacDo JP, Oliveira LS, et al. Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. Vol. 2012, Journal of Parasitology Research. 2012.2012.

6. Gupta G, Oghumu S, Satoskar AR. Mechanisms of Immune Evasion in Leishmaniasis. Vol. 82, Advances in Applied Microbiology. 2013.82:155–84. doi: 10.1016/B978-0-12-407679-2.00005-3 23415155

7. Scorza BM, Carvalho EM, Wilson ME. Cutaneous manifestations of human and murine leishmaniasis. Vol. 18, International Journal of Molecular Sciences. 2017.18(6).

8. Wanasen N, Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Vol. 41, Immunologic Research. 2008.41(1):15–25. doi: 10.1007/s12026-007-8012-y 18040886

9. Liu D, Uzonna JE. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Vol. 2, Frontiers in Cellular and Infection Microbiology. 2012.2(June):1–8. doi: 10.3389/fcimb.2012.00001

10. Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: Intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. Vol. 2015, BioMed Research International. 2015.2015.

11. Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Vol. 22, Drug Discov Today. 2017.22(1):186–93. doi: 10.1016/j.drudis.2016.08.006 27554801

12. Classen A, Lloberas J, Celada A. Macrophage Activation: Classical vs. Alternative. In: Reiner NE, editor. Vol. 531, Macrophages and Dendritic Cells, Methods and Protocols. Humana Press; 2009; p. 29–43.

13. Comalada M, Yeramian A, Modolell M, Lloberas J, Celada A. Arginine and Macrophage Activation. In: Ashman RB, editor. Vol. 844, Leucocytes, Methods and Protocols,. Humana Press; 2012; p. 223–35.

14. Muraille E, Leo O, Moser M. Th1/Th2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Vol. 5, Frontiers in Immunology. 2014.5(NOV):1–12. doi: 10.3389/fimmu.2014.00001

15. França-Costa J, Van Weyenbergh J, Boaventura VS, Luz NF, Malta-Santos H, Oliveira MCS, et al. Arginase I, polyamine, and prostaglandin E2pathways suppress the inflammatory response and contribute to diffuse cutaneous leishmaniasis. Vol. 211, Journal of Infectious Diseases. 2015.211(3):426–35. doi: 10.1093/infdis/jiu455 25124926

16. Mendes Wanderley JL, Costa JF, Borges VM, Barcinski M. Subversion of immunity by Leishmania amazonensis parasites: Possible role of phosphatidylserine as a main regulator. Vol. 2012, Journal of Parasitology Research. 2012.2012.

17. Kropf P, Freudenberg N, Kalis C, Modolell M, Herath S, Galanos C, et al. Infection of C57BL/10ScCr and C57BL/ 10ScNCr mice with Leishmania major reveals a role for Toll-like receptor 4 in the control of parasite replication. Vol. 76, Journal of Leukocyte Biology. 2004.76:48–57. doi: 10.1189/jlb.1003484 15039466

18. de Oliveira Cardoso F, de Souza C da SF, Mendes VG, Abreu‐Silva AL, Gonçalves da Costa SC, Calabrese K da S. Immunopathological Studies of Leishmania amazonensis Infection in Resistant and in Susceptible Mice. Vol. 201, The Journal of Infectious Diseases. 2010.201(12):1933–40. doi: 10.1086/652870 20462353

19. Silva-Almeida M, Carvalho LO, Abreu-Silva AL, Souza CS, Hardoim DJ, Calabrese KS. Extracellular matrix alterations in experimental Leishmania amazonensis infection in susceptible and resistant mice. Vol. 43, Veterinary Research. 2012.43(1):1–9.

20. de Souza C, Calabrese K, Abreu-Silva A, Carvalho L, Cardoso F, Dorval M, et al. Leishmania amazonensis isolated from human visceral leishmaniasis: histopathological analysis and parasitological burden in different inbred mice. Vol. 33, Histol Histopathol. 2018.33(7):705–16. doi: 10.14670/HH-11-965 29345298

21. Green LC, Wagner D a, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of Nitrate, Nitrite, and [15N ] Nitrate in Biological Fluids Automated NO; and NO? Analysis. Vol. 126, Analysis. 1982.126(1):131–8.

22. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. Vol. 38, Journal of Immunological Methods. 1980.38(1–2):161–70. doi: 10.1016/0022-1759(80)90340-3 6778929

23. Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Vol. 46, Journal of Immunological Methods. 1981.46(2):211–26. doi: 10.1016/0022-1759(81)90138-1 6273471

24. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJR, et al. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. Vol. 272, Journal of Biological Chemistry. 1997.272(8):4959–63. doi: 10.1074/jbc.272.8.4959 9030556

25. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Vol. 2, Nature Reviews Immunology. 2002.2(11):845–58. doi: 10.1038/nri933 12415308

26. Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Vol. 10, Frontiers in Microbiology. 2019.10(June):1–17.

27. Carneiro PP, Conceição J, Macedo M, Magalhães V, Carvalho EM, Bacellar O. The role of nitric oxide and reactive oxygen species in the killing of Leishmania braziliensis by monocytes from patients with cutaneous leishmaniasis. Vol. 11, PLoS ONE. 2016.11(2):1–16.

28. Ramos PKS, Brito MDV, Silveira FT, Salgado CG, De Souza W, Picanço-Diniz CW, et al. In vitro cytokines profile and ultrastructural changes of microglia and macrophages following interaction with Leishmania. Vol. 141, Parasitology. 2014.141(8):1052–63. doi: 10.1017/S0031182014000274 24717447

29. Hurdayal R, Brombacher F. Interleukin-4 receptor alpha: From innate to adaptive immunity in murine models of cutaneous leishmaniasis. Vol. 8, Frontiers in Immunology. 2017.8(NOV).

30. McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Vol. 201, Immunological Reviews. 2004.201:206–24. doi: 10.1111/j.0105-2896.2004.00190.x 15361243

31. Sans-Fons MG, Yeramian A, Pereira-Lopes S, Santamaría-Babi LF, Modolell M, Lloberas J, et al. Arginine transport is impaired in C57Bl/6 mouse macrophages as a result of a deletion in the promoter of Slc7a2 (CAT2), and susceptibility to Leishmania infection is reduced. Vol. 207, Journal of Infectious Diseases. 2013.207(11):1684–93. doi: 10.1093/infdis/jit084 23460752

32. Mukbel R, Patten CJ, Gibson K, Ghosh M, Petersen C, Jones D. Macrophage Killing of Leishmania Amazonensis Amastigotes Requires Both Nitric Oxide and Superoxide. Vol. 76, The American Journal of Tropical Medicine and Hygiene. 2007.76(4):669–75. 17426168

33. Iniesta V, Gómez-Nieto LC, Corraliza I. The Inhibition of Arginase by N ω -Hydroxy-l-Arginine Controls the Growth of Leishmania Inside Macrophages. Vol. 193, The Journal of Experimental Medicine. 2001.193(6):777–84. doi: 10.1084/jem.193.6.777 11257143

34. Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, et al. Arginine and polyamines fate in leishmania infection. Vol. 8, Frontiers in Microbiology. 2018.8(JAN):1–15.

35. de Souza Carmo ÉV, Katz S, Barbiéri CL. Neutrophils reduce the parasite burden in Leishmania (Leishmania) amazonensis-infected macrophages. Vol. 5, PLoS ONE. 2010.5(11).

36. Gomes IN, De Carvalho Calabrich AF, Da Silva Tavares R, Wietzerbin J, Rodrigues De Freitas LA, Tavares Veras PS. Differential properties of CBA/J mononuclear phagocytes recovered from an inflammatory site and probed with two different species of Leishmania. Vol. 5, Microbes and Infection. 2003.5(4):251–60. doi: 10.1016/s1286-4579(03)00025-x 12706438

37. Scott P, Novais FO. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Vol. 16, Nature Reviews Immunology. 2016.16(9):581–92. doi: 10.1038/nri.2016.72 27424773

38. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, et al. The ity/lsh/bcg locus: Natural resistance to infection with intracellular parasites is abrogated by disruption of the nrampl gene. Vol. 182, Journal of Experimental Medicine. 1995.182(3):655–66. doi: 10.1084/jem.182.3.655 7650477

39. Blackwell JM, Searle S, Mohamed H, White JK. Divalent cation transport and susceptibility to infectious and autoimmune disease: Continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Vol. 85, Immunology Letters. 2003.85(2):197–203. doi: 10.1016/s0165-2478(02)00231-6 12527228

40. Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg. Vol. 73, Cell. 1993.73(3):469–85. doi: 10.1016/0092-8674(93)90135-d 8490962

41. Braliou GG, Kontou PI, Boleti H, Bagos PG. Susceptibility to leishmaniasis is affected by host SLC11A1 gene polymorphisms: a systematic review and meta-analysis. Parasitology Research. 2019.(Desjeux 1996).

42. Consortium L, 2 WTCCC, Fakiola M, Strange A, Cordell HJ, Miller EN, et al. Common variants in the HLA-DRB1–HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Vol. 45, Nature Genetics. 2013.45:208. doi: 10.1038/ng.2518 23291585


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň