Odd haemoglobins in odd-toed ungulates: Impact of selected haemoglobin characteristics of the white rhinoceros (Ceratotherium simum) on the monitoring of the arterial oxygen saturation of haemoglobin

Autoři: Julia K. Reiners aff001;  Nadja Hellmann aff002;  Juliane Schmidt aff002;  Sabine B. R. Kästner aff001
Působiště autorů: Department of Anaesthesiology, University of Veterinary Medicine Hanover, Foundation, Hanover, Germany aff001;  Institute for Molecular Biophysics, University of Mainz, Mainz, Germany aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0226851



Due to the current poaching crisis in Africa, increasing numbers of white rhinoceroses (Ceratotherium simum) require opioid immobilisation for medical interventions or management procedures. Alarmingly, the results of both blood gas analysis and pulse oximetry regularly indicate severe hypoxaemia. Yet, the recovery of the animals is uneventful. Thus, neither of the techniques seems to represent the real oxygenation level. We hypothesized that unusual haemoglobin characteristics of this species interfere with the techniques developed and calibrated for the use in human patients.


Haemoglobin was isolated from blood samples of four adult, white rhinoceroses. Oxygen dissociation curves at pH 7.2 and 7.4 (37°C) were determined based on the absorbance change of haemoglobin in the Soret-region (around 420 nm). Absorbance spectra of oxy- and deoxyhaemoglobin extending into the infrared region were measured.


Oxygen dissociation curves of rhinoceros haemoglobin showed the typical high oxygen affinity (p50 of 2.75 ± 0.07 and 2.00 ± 0.04 kPa for pH 7.2 and 7.4, respectively) under near-physiological conditions with respect to pH, temperature and DPG. The infrared absorbance spectra of oxy- and deoxyhaemoglobin showed only marginal deviations from standard human spectra, possibly due to the presence of a few percent of methaemoglobin in vitro.


Our data enables the development of a rhinoceros-specific blood gas analysis algorithm, which allows for species-specific calculation of SaO2 levels in anaesthetized animals. The inconspicuous absorbance spectra do not contribute to the systematic underestimation of SpO2 by pulse-oximetry.

Klíčová slova:

Algorithms – Blood – Domestic animals – Horses – Chemical dissociation – Opioids – Oxygen – Gas analysis


1. De Lange SS, Fuller A, Haw A, Hofmeyr M, Buss P, et al. (2017) Tremors in white rhinoceroses (Ceratotherium simum) during etorphine-azaperone immobilisation. J S Afr Vet Assoc 88: e1–e10.

2. Sendak MJ, Harris AP, Donham RT (1988) Accuracy of pulse oximetry during arterial oxyhemoglobin desaturation in dogs. Anesthesiology 68: 111–114. doi: 10.1097/00000542-198801000-00018 3337361

3. Grosenbaugh DA, Alben JO, Muir WW (1997) Absorbance spectra of inter-species hemoglobins in the visible and near infrared regions. Journal of Veterinary Emergency & Critical Care 7: 36–42.

4. Buss P, Olea-Popelka F, Meyer L, Hofmeyr J, Mathebula N, et al. (2015) Evaluation of cardiorespiratory, blood gas and lactate values during extended immobilization of white rhinoceros (Ceratotherium simum) Journal of Zoo and Wildlife Medicine 46: 224–233. doi: 10.1638/2014-0089R.1 26056872

5. Buss P, Miller M, Fuller A, Haw A, Stout E, et al. (2018) Postinduction butorphanol administration alters oxygen consumption to improve blood gases in etorphine-immobilized white rhinoceros. Vet Anaesth Analg 45: 57–67. doi: 10.1016/j.vaa.2017.03.008 29242121

6. Meyer LCR, Fuller A, Hofmeyr M, Buss P, Miller M, et al. (2018) Use of butorphanol and diprenorphine to counter respiratory impairment in the immobilised white rhinoceros (Ceratotherium simum). J S Afr Vet Assoc 89: e1–e8.

7. Haymerle A, Knauer F, Walzer C (2016) Two methods to adapt the human haemoglobin–oxygen dissociation algorithm to the blood of white rhinoceros (Ceratotherium simum) and to determine the accuracy of pulse oximetry. Veterinary Anaesthesia and Analgesia 43: 566–570. doi: 10.1111/vaa.12334 26821767

8. Baumann R, Mazur G, Braunitzer G (1984) Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir. Respir Physiol 56: 1–9. doi: 10.1016/0034-5687(84)90124-5 6429805

9. Siggaard-Andersen O, Wimberley PD, Gothgen I, Siggaard-Andersen M (1984) A mathematical model of the hemoglobin-oxygen dissociation curve of human blood and of the oxygen partial pressure as a function of temperature. Clin Chem 30: 1646–1651. 6478594

10. Zur B, Bagci S, Ludwig M, Stoffel-Wagner B (2012) Oxygen saturation in pulse oximetry in hemoglobin anomalies. Klin Padiatr 224: 259–265. doi: 10.1055/s-0032-1312612 22815129

11. Paoli M, Nagai K. (2004) Hemoglobin. In: Messerschmidt A, editor. Handbook of Metalloproteins. Chichester: Wiley-VCH. pp. 1–15.

12. Wen-Hsiang Chang M-HL, Chen Yi-Chien, Chang Yen, Wei Hao-Ji, Sung Hsing-Wen(2003) Conditions for Storage of Stroma-Free Hemoglobin Solutions for Fabricating Blood Substitutes. Journal of Medical and Biological Engineering 23: 191–198.

13. Dolman D, Gill S. J. (1978) Membrane-covered thin-layer optical cell for gas-reaction studies on hemoglobin. Anal Biochem 87: 127–134. doi: 10.1016/0003-2697(78)90576-6 677440

14. Hayashi AST.; Shin M. (1973) An enzymic reduction system for metmyoglobin and methemoglobin, and its application to functional studies of oxygen carriers. Biochimica et Biophysica Acta, M 310: 309–316.

15. Winslow RM (2007) The role of hemoglobin oxygen affinity in oxygen transport at high altitude. Respir Physiol Neurobiol 158: 121–127. doi: 10.1016/j.resp.2007.03.011 17449336

16. Miller M, Buss P, Joubert J, Mathebula N, Kruger M, et al. (2013) Use of butorphanol during immobilization of free-ranging white rhinoceros (Ceratotherium simum). Journal of Zoo and Wildlife Medicine 44: 55–61. doi: 10.1638/1042-7260-44.1.55 23505703

17. Lapennas GN (1983) The magnitude of the Bohr coefficient: optimal for oxygen delivery. Respir Physiol 54: 161–172. doi: 10.1016/0034-5687(83)90054-3 6420858

18. Zijlstra WG, Buursma A, Meeuwsen-van der Roest WP (1991) Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem 37: 1633–1638. 1716537

19. Weber BW, Paglia DE, Harley EH (2004) Elevated free tyrosine in rhinoceros erythrocytes. Comp Biochem Physiol A Mol Integr Physiol 138: 105–109. doi: 10.1016/j.cbpb.2004.03.002 15165577

20. Mills PC, Smith NC, Casas I, Harris P, Harris RC, et al. (1996) Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse. Eur J Appl Physiol Occup Physiol 74: 60–66. doi: 10.1007/bf00376495 8891501

21. Chan ED, Chan MM, Chan MM (2013) Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations. Respir Med 107: 789–799. doi: 10.1016/j.rmed.2013.02.004 23490227

22. Emslie R (2012) Ceratotherium simum. The IUCN Red List of Threatened Species 2012.

Článok vyšiel v časopise


2019 Číslo 12