A scalable culturing system for the marine annelid Platynereis dumerilii


Autoři: Emily Kuehn aff001;  Alexander W. Stockinger aff002;  Jerome Girard aff001;  Florian Raible aff002;  B. Duygu Özpolat aff001
Působiště autorů: Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America aff001;  Max Perutz Labs, University of Vienna, Vienna, Austria aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0226156

Souhrn

Platynereis dumerilii is a marine segmented worm (annelid) with externally fertilized embryos and it can be cultured for the full life cycle in the laboratory. The accessibility of embryos and larvae combined with the breadth of the established molecular and functional techniques has made P. dumerilii an attractive model for studying development, cell lineages, cell type evolution, reproduction, regeneration, the nervous system, and behavior. Traditionally, these worms have been kept in rooms dedicated for their culture. This allows for the regulation of temperature and light cycles, which is critical to synchronizing sexual maturation. However, regulating the conditions of a whole room has limitations, especially if experiments require being able to change culturing conditions. Here we present scalable and flexible culture methods that provide ability to control the environmental conditions, and have a multi-purpose culture space. We provide a closed setup shelving design with proper light conditions necessary for P. dumerilii to mature. We also implemented a standardized method of feeding P. dumerilii cultures with powdered spirulina which relieves the ambiguity associated with using frozen spinach, and helps standardize nutrition conditions across experiments and across different labs. By using these methods, we were able to raise mature P. dumerilii, capable of spawning and producing viable embryos for experimentation and replenishing culture populations. These methods will allow for the further accessibility of P. dumerilii as a model system, and they can be adapted for other aquatic organisms.

Klíčová slova:

Algae – Embryos – Fertilization – Larvae – Light – Sea water – Spinach – Sunlight


Zdroje

1. Wilson EB. The cell-lineage of Nereis. A contribution to the cytogeny of the annelid body. J Morphol. 1892;6: 361–480.

2. Fischer A, Dorresteijn A. The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays. 2004;26: 314–325. doi: 10.1002/bies.10409 14988933

3. Williams EA, Jékely G. Towards a systems-level understanding of development in the marine annelid Platynereis dumerilii. Curr Opin Genet Dev. 2016;39: 175–181. doi: 10.1016/j.gde.2016.07.005 27501412

4. Balavoine G. Segment formation in Annelids: patterns, processes and evolution. Int J Dev Biol. 2014;58: 469–483. doi: 10.1387/ijdb.140148gb 25690963

5. Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii. Elife. 2017;6. doi: 10.7554/eLife.30463 29231816

6. Planques A, Malem J, Parapar J, Vervoort M, Gazave E. Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii. Dev Biol. 2018. doi: 10.1016/j.ydbio.2018.11.004 30445055

7. Gazave E, Béhague J, Laplane L, Guillou A, Préau L, Demilly A, et al. Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularly related to primordial germ cells. Dev Biol. 2013;382: 246–267. doi: 10.1016/j.ydbio.2013.07.013 23891818

8. Ayers T, Tsukamoto H, Gühmann M, Veedin Rajan VB, Tessmar-Raible K. A Go-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii. BMC Biol. 2018;16: 41. doi: 10.1186/s12915-018-0505-8 29669554

9. Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, et al. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. Elife. 2019;8. doi: 10.7554/eLife.41556 30767890

10. Lauri A, Brunet T, Handberg-Thorsager M, Fischer HL, Simakov O, Steinmetz PRH, et al. Development of the annelid axochord: Insights into notochord evolution. Science. 2014. doi: 10.1126/science.1253396 25214631

11. Brunet T, Fischer AHL, Steinmetz PRH, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. Elife. 2016;5: e19607. doi: 10.7554/eLife.19607 27906129

12. Ackermann C, Dorresteijn A, Fischer A. Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol. 2005;266: 258–280. doi: 10.1002/jmor.10375 16170805

13. Nakama AB, Chou H-C, Schneider SQ. The asymmetric cell division machinery in the spiral-cleaving egg and embryo of the marine annelid Platynereis dumerilii. BMC Dev Biol. 2017;17: 16. doi: 10.1186/s12861-017-0158-9 29228898

14. Rebscher N, Lidke AK, Ackermann CF. Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerillii are two distinct cell populations. Evodevo. 2012;3: 9. doi: 10.1186/2041-9139-3-9 22512981

15. Vergara HM, Bertucci PY, Hantz P, Tosches MA, Achim K, Vopalensky P, et al. Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii. Proc Natl Acad Sci U S A. 2017;114: 5878–5885. doi: 10.1073/pnas.1610602114 28584082

16. Zantke J, Ishikawa-Fujiwara T, Arboleda E, Lohs C, Schipany K, Hallay N, et al. Circadian and Circalunar Clock Interactions in a Marine Annelid. Cell Rep. 2013;5: 99–113. doi: 10.1016/j.celrep.2013.08.031 24075994

17. Fischer AH, Henrich T, Arendt D. The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool. 2010;7: 31. doi: 10.1186/1742-9994-7-31 21192805

18. Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, et al. Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci U S A. 2013;110: 193–198. doi: 10.1073/pnas.1209657109 23284166

19. Zantke J, Bannister S, Rajan VBV, Raible F, Tessmar-Raible K. Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics. 2014;197: 19–31. doi: 10.1534/genetics.112.148254 24807110

20. Veedin-Rajan VB, Fischer RM, Raible F, Tessmar-Raible K. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii. PLoS One. 2013;8: e75811. doi: 10.1371/journal.pone.0075811 24086637

21. Bannister S, Antonova O, Polo A, Lohs C, Hallay N, Valinciute A, et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics. 2014;197: 77–89. doi: 10.1534/genetics.113.161091 24653002

22. Gühmann M, Jia H, Randel N, Verasztó C, Bezares-Calderón LA, Michiels NK, et al. Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis. Curr Biol. 2015;25: 2265–2271. doi: 10.1016/j.cub.2015.07.017 26255845

23. Bezares-Calderón LA, Berger J, Jasek S, Verasztó C, Mendes S, Gühmann M, et al. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. Elife. 2018;7. doi: 10.7554/eLife.36262 30547885

24. Achim K, Eling N, Vergara HM, Bertucci PY, Brunet T, Collier P, et al. Whole-body single-cell sequencing of the Platynereis larva reveals a subdivision into apical versus non-apical tissues. bioRxiv. 2017. p. 167742. doi: 10.1101/167742

25. Randel N, Asadulina A, Bezares-Calderón LA, Verasztó C, Williams EA, Conzelmann M, et al. Neuronal connectome of a sensory-motor circuit for visual navigation. Elife. 2014;3. doi: 10.7554/eLife.02730 24867217

26. Verasztó C, Ueda N, Bezares-Calderón LA, Panzera A, Williams EA, Shahidi R, et al. Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva. eLife Sciences. 2017;6: e26000.

27. Chartier TF, Deschamps J, Dürichen W, Jékely G, Arendt D. Whole-head recording of chemosensory activity in the marine annelid Platynereis dumerilii. Open Biol. 2018;8. doi: 10.1098/rsob.180139 30381362

28. Just EE. On Rearing Sexually Mature Platynereis megalops from Eggs. Am Nat. 1922;56: 471–478.

29. Just EE. The Relation of the First Cleavage Plane to the Entrance Point of the Sperm. Biol Bull. 1912;22: 239–252.

30. Hempelmann F. Zur Naturgeschichte von Nereis dumerilii. Aud et Edw Zoologica. 1911;25: 1–135.

31. Fischer A, Dorresteijn A. Culturing Platynereis dumerilii. http://www.staff.uni-giessen.de/~gf1307/breeding.htm

32. García-Alonso J, Smith BD, Rainbow PS. A compacted culture system for a marine model polychaete (Platynereis dumerilii). Pan-American Journal of Aquatic Sciences. 2013;8: 142–146.

33. Strathmann RR. Culturing larvae of marine invertebrates. Methods Mol Biol. 2014;1128: 1–25. doi: 10.1007/978-1-62703-974-1_1 24567204

34. Just EE. Breeding Habits of the Heteronereis Form of Platynereis megalops at Woods Hole, Mass. Biol Bull. 1914;27: 201–212.

35. Raible F, Takekata H, Tessmar-Raible K. An Overview of Monthly Rhythms and Clocks. Front Neurol. 2017;8: 189. doi: 10.3389/fneur.2017.00189 28553258

36. Cho E, Oh JH, Lee E, Do YR, Kim EY. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila. Sci Rep. 2016;6: 37784. doi: 10.1038/srep37784 27883065

37. Ranzi S. Ricerche sulla biologia sessuale degli Anellidi. Pubbl Staz Zool Napoli. 1931;11: 271–292.

38. Ranzi S. Maturita sessuale degli Anellidi e fasi lunari. Boll Soc Ital Biol Sper. 1931;6: 18.

39. Pechenik JA, Levy M, Allen JD. Instant Ocean Versus Natural Seawater: Impacts on Aspects of Reproduction and Development in Three Marine Invertebrates. Biol Bull. 2019; 000–000.


Článok vyšiel v časopise

PLOS One


2019 Číslo 12