Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/ PGC-1α pathway in diabetic kidney

Autoři: Safia Akhtar aff001;  Helmy M. Siragy aff001
Působiště autorů: Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225728


Abnormal mitochondrial biogenesis and function has been linked to multiple diseases including diabetes. Recently, we demonstrated the role of renal (Pro)renin receptor (PRR) in the dysregulation of mitochondria. We hypothesized that PRR contributes to the reduction of mitochondrial biogenesis and function in diabetic kidney via PGC-1α/AMPK/SIRT-1 signaling pathway. In vivo and in vitro studies were conducted in C57BL/6 mouse and mouse renal mesangial cells (mRMCs). Control and streptozotocin-induced diabetic mice were injected with scramble or PRR shRNA and followed for a period of eight weeks. PRR mRNA and protein expression increased by 44% and 39% respectively (P<0.05) in kidneys of diabetic mice, and in mRMCs exposed to high glucose by 43 and 61% respectively compared to their respective controls. These results were accompanied by reduced mRNA and protein expressions of PGC-1α (67% and 75%), nuclear respiratory factors (NRF-1, 48% and 53%), mitochondrial transcriptional factor A (mtTFA, 56% and 40%), mitochondrial DNA copy number by 75% (all, P<0.05), and ATP production by 54%, respectively in diabetic kidneys and in mRMCs exposed to high glucose. Compared to non-diabetic control mice, PRR knockdown in diabetic mice and in mRMCs, not only attenuated the PRR mRNA and protein expression but also normalized mRNA and protein expressions of PGC-1α, NRF-1, mtTFA, mitochondrial DNA copy number, and ATP production. Treatment with AMPK inhibitor, Compound C, or SIRT-1 inhibitor, EX-527, alone, or combined with PRR siRNA caused marked reduction of mRNA expression of PGC-1α, NRF-1 and mtTFA, and ATP production in mRMCs exposed to high glucose. In conclusion, our study demonstrated the contribution of the PRR to the reduction of mitochondrial biogenesis and function in diabetic kidney disease via decreasing AMPK/SIRT-1/ PGC-1α signaling pathway.

Klíčová slova:

Biosynthesis – Glucose – Kidneys – Mitochondria – Mitochondrial DNA – Protein expression – Small interfering RNAs


1. Ghaderian Sb, Hayati F, Shayanpour S, Mousavi Ssb. Diabetes And End-Stage Renal Disease; A Review Article On New Concepts. Journal Of Renal Injury Prevention. 2015;4(2):28. doi: 10.12861/jrip.2015.07 26060834

2. Thakar Cv, Christianson A, Himmelfarb J, Leonard Ac. Acute Kidney Injury Episodes And Chronic Kidney Disease Risk In Diabetes Mellitus. Clinical Journal Of The American Society Of Nephrology. 2011:Cjn. 01120211.

3. Yamamoto Y, Maeshima Y, Kitayama H, Kitamura S, Takazawa Y, Sugiyama H, Et Al. Tumstatin Peptide, An Inhibitor Of Angiogenesis, Prevents Glomerular Hypertrophy In The Early Stage Of Diabetic Nephropathy. Diabetes. 2004;53(7):1831–40. doi: 10.2337/diabetes.53.7.1831 15220208

4. Brownlee M. Biochemistry And Molecular Cell Biology Of Diabetic Complications. Nature. 2001;414(6865):813. doi: 10.1038/414813a 11742414

5. Hotta O, Inoue Cn, Miyabayashi S, Furuta T, Takeuchi A, Taguma Y. Clinical And Pathologic Features Of Focal Segmental Glomerulosclerosis With Mitochondrial Trnaleu (Uur) Gene Mutation. Kidney International. 2001;59(4):1236–43. doi: 10.1046/j.1523-1755.2001.0590041236.x 11260383

6. Sivitz Wi, Yorek Ma. Mitochondrial Dysfunction In Diabetes: From Molecular Mechanisms To Functional Significance And Therapeutic Opportunities. Antioxidants & Redox Signaling. 2010;12(4):537–77.

7. Lowell Bb, Shulman Gi. Mitochondrial Dysfunction And Type 2 Diabetes. Science. 2005;307(5708):384–7. doi: 10.1126/science.1104343 15662004

8. Hesselink Mk, Schrauwen-Hinderling V, Schrauwen P. Skeletal Muscle Mitochondria As A Target To Prevent Or Treat Type 2 Diabetes Mellitus. Nature Reviews Endocrinology. 2016;12(11):633.

9. Williams M, Caino Mc. Mitochondrial Dynamics In Type 2 Diabetes And Cancer. Frontiers In Endocrinology. 2018;9:211. doi: 10.3389/fendo.2018.00211 29755415

10. Phielix E, Meex R, Moonen-Kornips E, Hesselink M, Schrauwen P. Exercise Training Increases Mitochondrial Content And Ex Vivo Mitochondrial Function Similarly In Patients With Type 2 Diabetes And In Control Individuals. Diabetologia. 2010;53(8):1714–21. doi: 10.1007/s00125-010-1764-2 20422397

11. Matavelli Lc, Huang J, Siragy Hm. (Pro) Renin Receptor Contributes To Diabetic Nephropathy By Enhancing Renal Inflammation. Clinical And Experimental Pharmacology And Physiology. 2010;37(3):277–82. doi: 10.1111/j.1440-1681.2009.05292.x 19769609

12. Huang J, Siragy Hm. Glucose Promotes The Production Of Interleukine-1β And Cyclooxygenase-2 In Mesangial Cells Via Enhanced (Pro) Renin Receptor Expression. Endocrinology. 2009;150(12):5557–65. doi: 10.1210/en.2009-0442 19861503

13. Li C, Siragy Hm. (Pro) Renin Receptor Regulates Autophagy And Apoptosis In Podocytes Exposed To High Glucose. American Journal Of Physiology-Endocrinology And Metabolism. 2015;309(3):E302–E10. doi: 10.1152/ajpendo.00603.2014 26081285

14. Huang J, Matavelli Lc, Siragy Hm. Renal (Pro) Renin Receptor Contributes To Development Of Diabetic Kidney Disease Through Transforming Growth Factor‐B1–Connective Tissue Growth Factor Signalling Cascade. Clinical And Experimental Pharmacology And Physiology. 2011;38(4):215–21. doi: 10.1111/j.1440-1681.2011.05486.x 21265872

15. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Et Al. Resveratrol Improves Mitochondrial Function And Protects Against Metabolic Disease By Activating Sirt1 And Pgc-1α. Cell. 2006;127(6):1109–22. doi: 10.1016/j.cell.2006.11.013 17112576

16. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Et Al. Sirt1 Improves Insulin Sensitivity Under Insulin-Resistant Conditions By Repressing Ptp1b. Cell Metabolism. 2007;6(4):307–19. doi: 10.1016/j.cmet.2007.08.014 17908559

17. Park S-J, Ahmad F, Um J-H, Brown Al, Xu X, Kang H, Et Al. Specific Sirt1 Activator-Mediated Improvement In Glucose Homeostasis Requires Sirt1-Independent Activation Of Ampk. Ebiomedicine. 2017;18:128–38. doi: 10.1016/j.ebiom.2017.03.019 28396013

18. Mizuguchi Y, Yatabe M, Morishima N, Morimoto S, Ichihara A. Buffering Roles Of (Pro) Renin Receptor In Starvation‐Induced Autophagy Of Skeletal Muscles. Physiological Reports. 2018;6(5).

19. Velazquez-Villegas La, Perino A, Lemos V, Zietak M, Nomura M, Pols Twh, Et Al. Tgr5 Signalling Promotes Mitochondrial Fission And Beige Remodelling Of White Adipose Tissue. Nature Communications. 2018;9(1):245. doi: 10.1038/s41467-017-02068-0 29339725

20. Zhang T, Zhao X, Steer Cj, Yan G, Song G. A Negative Feedback Loop Between Microrna-378 And Nrf1 Promotes The Development Of Hepatosteatosis In Mice Treated With A High Fat Diet. Metabolism. 2018;85:183–91. doi: 10.1016/j.metabol.2018.03.023 29625129

21. Quan N, Wang L, Chen X, Luckett C, Cates C, Rousselle T, Et Al. Sestrin2 Prevents Age-Related Intolerance To Post Myocardial Infarction Via Ampk/Pgc-1α Pathway. Journal Of Molecular And Cellular Cardiology. 2018;115:170–8. doi: 10.1016/j.yjmcc.2018.01.005 29325933

22. Sun L, Cao J, Chen K, Cheng L, Zhou C, Yan B, Et Al. Betulinic Acid Inhibits Stemness And Emt Of Pancreatic Cancer Cells Via Activation Of Ampk Signaling. International Journal Of Oncology. 2019;54(1):98–110. doi: 10.3892/ijo.2018.4604 30365057

23. Liu X, Qu H, Zheng Y, Liao Q, Zhang L, Liao X, Et Al. Mitochondrial Glycerol 3‐Phosphate Dehydrogenase Promotes Skeletal Muscle Regeneration. Embo Molecular Medicine. 2018;10(12):E9390. doi: 10.15252/emmm.201809390 30389681

24. Qiao H, Ren H, Du H, Zhang M, Xiong X, Lv R. Liraglutide Repairs The Infarcted Heart: The Role Of The Sirt1/Parkin/Mitophagy Pathway. Molecular Medicine Reports. 2018;17(3):3722–34. doi: 10.3892/mmr.2018.8371 29328405

25. Taylor Rw, Turnbull Dm. Mitochondrial Dna Mutations In Human Disease. Nature Reviews Genetics. 2005;6(5):389. doi: 10.1038/nrg1606 15861210

26. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F. Patients With Type 2 Diabetes Have Normal Mitochondrial Function In Skeletal Muscle. Diabetologia. 2007;50(4):790–6. doi: 10.1007/s00125-007-0594-3 17334651

27. Koves Tr, Ussher Jr, Noland Rc, Slentz D, Mosedale M, Ilkayeva O, Et Al. Mitochondrial Overload And Incomplete Fatty Acid Oxidation Contribute To Skeletal Muscle Insulin Resistance. Cell Metabolism. 2008;7(1):45–56. doi: 10.1016/j.cmet.2007.10.013 18177724

28. Hong Ya, Lim Jh, Kim My, Kim Tw, Kim Y, Yang Ks, Et Al. Fenofibrate Improves Renal Lipotoxicity Through Activation Of Ampk-Pgc-1α In Db/Db Mice. Plos One. 2014;9(5):E96147. doi: 10.1371/journal.pone.0096147 24801481

29. Kim M, Lim J, Youn H, Hong Y, Yang K, Park H, Et Al. Resveratrol Prevents Renal Lipotoxicity And Inhibits Mesangial Cell Glucotoxicity In A Manner Dependent On The Ampk–Sirt1–Pgc1α Axis In Db/Db Mice. Diabetologia. 2013;56(1):204–17. doi: 10.1007/s00125-012-2747-2 23090186

30. Ekstrand Mi, Falkenberg M, Rantanen A, Park Cb, Gaspari M, Hultenby K, Et Al. Mitochondrial Transcription Factor A Regulates Mtdna Copy Number In Mammals. Human Molecular Genetics. 2004;13(9):935–44. doi: 10.1093/hmg/ddh109 15016765

31. Montgomery Mk, Turner N. Mitochondrial Dysfunction And Insulin Resistance: An Update. Endocrine Connections. 2015;4(1):R1–R15. doi: 10.1530/EC-14-0092 25385852

Článok vyšiel v časopise


2019 Číslo 12