Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria


Autoři: Yoann Besset-Manzoni aff001;  Pierre Joly aff002;  Aline Brutel aff002;  Florence Gerin aff001;  Olivier Soudière aff003;  Thierry Langin aff003;  Claire Prigent-Combaret aff001
Působiště autorů: UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne cedex, France aff001;  Biovitis, Le Bourg, Saint Etienne-de-Chomeil, France aff002;  INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont–Ferrand, France aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225655

Souhrn

Biological control is a great hope for reducing the overutilization of pesticides in agricultural soils. It often involves microorganisms or molecules produced by microorganisms that will be able to interact with either a plant or pathogens of this plant to reduce the growth of the pathogen and limit its negative impact on the host plant. When new biocontrol products are developed, strains were mostly selected based on their ability to inhibit a pathogen of interest under in vitro conditions via antagonistic effects. Strains with no in vitro effect are often discarded and not tested in planta. But is the in vitro selection of bacterial agents according to their antagonism activities towards a plant pathogen the best way to get effective biocontrol products? To answer this question, we used wheat and the fungal pathogen Fusarium graminearum as a study pathosystem model. A library of 205 soil bacteria was screened in 2 types of in vitro growth inhibition tests against F. graminearum, and in an in planta experiment. We find strains which do not have inhibition phenotypes in vitro but good efficacy in planta. Interestingly, some strains belong to species (Microbacterium, Arthrobacter, Variovorax) that are not known in the literature for their ability to protect plants against fungal pathogens. Thus, developing a biocontrol product against F. graminearum must be preferentially based on the direct screening of strains for their protective activity on wheat plants against fungal diseases, rather than on their in vitro antagonistic effects on fungal growth.

Klíčová slova:

Bacillus – Bacterial spores – Fungal spores – Mycelium – Plant bacterial pathogens – Pseudomonas – Staphylococcus – Wheat


Zdroje

1. Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. 2009;2: 1–12. doi: 10.2478/v10102-009-0001-7 21217838

2. Cooper J, Dobson H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007;26: 1337–1348. https://doi.org/10.1016/j.cropro.2007.03.022

3. Carson R. Silent Spring. Houghton Mifflin Harcourt; 2002

4. Köhler H-R, Triebskorn R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 2013;341: 759–765. https://doi.org/10.1126/science.1237591 23950533

5. Pimentel D. Amounts of pesticides reaching target pests: Environmental impacts and ethics. J Agric Environ Ethics 1995;8: 17–29. https://doi.org/10.1007/BF02286399

6. Shao H, Zhang Y. Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci Rep. 2017;7: 5521. https://doi.org/10.1038/s41598-017-05923-8 28717209

7. Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, et al. Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol. Appl. 2011. 4, 200–215. https://doi.org/10.1111/j.1752-4571.2010.00179.x 25567968

8. Levitan L, Merwin I, Kovach J. Assessing the relative environmental impacts of agricultural pesticides: the quest for a holistic method. Agric Ecosyst Environ. 1995;55: 153–168. https://doi.org/10.1016/0167-8809(95)00622-Y

9. Salvia MV, Ben Jrad A, Raviglione D, Zhou Y, Bertrand C. Environmental Metabolic Footprinting (EMF) vs. half-life: a new and integrative proxy for the discrimination between control and pesticides exposed sediments in order to further characterise pesticides' environmental impact. Environ Sci Pollut Res Int. 2018;25(30): 29841–29847. doi: 10.1007/s11356-017-9600-6 28660511

10. Avis TJ, Gravel V, Antoun H, Tweddell RJ. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem. 2008;40: 1733–1740. https://doi.org/10.1016/j.soilbio.2008.02.013

11. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;4: 356. https://doi.org/10.3389/fpls.2013.00356 24062756

12. Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol. 2019;10: 302. https://doi.org/10.3389/fmicb.2019.00302. 30873135

13. Jacoby RP, Kopriva S. Metabolic niches in the rhizosphere microbiome: new tools and approaches to analyse metabolic mechanisms of plant-microbe nutrient exchange. J Exp Bot. 2019;70(4): 1087–1094. https://doi.org/10.1093/jxb/ery438. 30576534

14. Van Loon LC, Bakker P, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36: 453–483. doi: 10.1146/annurev.phyto.36.1.453 15012509

15. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, et al. unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012;96: 1712–1728. http://dx.doi.org/10.1094/PDIS-03-12-0291-FE 30727259

16. D’mello JF, Macdonald AM, Postel D, Dijksma WT, Dujardin A, Placinta CM. Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Pathol. 1998;104: 741–751.

17. Mesterhazy A, Bartok T, Lamper C. Influence of wheat cultivar, species of Fusarium, and isolate aggressiveness on the efficacy of fungicides for control of Fusarium head blight. Plant Dis. 2003;87: 1107–1115. https://doi.org/10.1094/PDIS.2003.87.9.1107 30812826

18. Milus EA, Parsons CE. Evaluation of foliar fungicides for controlling Fusarium head blight of wheat. Plant Dis. 1994;78: 697–699. doi: 10.1094/PD-78-0697

19. Dal Bello GM, Monaco CI, Simon MR. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World J Microbiol Biotechnol. 2002;18: 627–636.

20. Nourozian J, Etebarian HR, Khodakaramian G, et al. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J Sci Technol. 2006;28: 29–38.

21. Pan D, Mionetto A, Tiscornia S, Bettucci L. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res. 2015;31: 137–143. https://doi.org/10.1007/s12550-015-0224-8 25956808

22. Schisler DA, Khan NI, Boehm MJ, Slininger PJ. Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant Dis. 2002;86: 1350–1356. doi: 10.1094/PDIS.2002.86.12.1350 30818440

23. Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, Song H, et al. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLOS ONE. 2014;9: e92486. doi: 10.1371/journal.pone.0092486 24651513

24. Khan MR, Doohan FM. Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol Control. 2009;48: 42–47. https://doi.org/10.1016/j.biocontrol.2008.08.015

25. Palazzini JM, Ramirez ML, Torres AM, Chulze SN. Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot. 2007;26: 1702–1710. https://doi.org/10.1016/j.cropro.2007.03.004

26. El Zemrany H, Cortet J, Peter Lutz M, Chabert A, Baudoin E, Haurat J, et al. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol Biochem. 2006;38: 1712–1726. https://doi.org/10.1016/j.soilbio.2005.11.025

27. Joly P, Bonnemoy F, Besse-Hoggan P, Perrière F, Crouzet O, Cheviron N, et al. Responses of Limagne “Clay/Organic Matter-Rich” soil microbial communities to realistic formulated herbicide mixtures, including S-Metolachlor, Mesotrione, and Nicosulfuron. Water Air Soil Pollut. 2015;226: 413. https://doi.org/10.1007/s11270-015-2683-0

28. Bachate SP, Cavalca L, Andreoni V. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol. 2009;107: 145–156. https://doi.org/10.1111/j.1365-2672.2009.04188.x 19291237

29. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989;17: 7843–7853. doi: 10.1093/nar/17.19.7843 2798131

30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. https://doi.org/10.1093/nar/gkh340 15034147

31. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44: W242–W245. https://doi.org/10.1093/nar/gkw290 27095192

32. Shi C, Yan P, Li J, Wu H, Li Q, Guan S. Biocontrol of Fusarium graminearum growth and deoxynivalenol production in wheat kernels with bacterial antagonists. Int J Environ Res Public Health 2014;11: 1094–1105. https://doi.org/10.3390/ijerph110101094 24441510

33. Bell S, Alford R, Garland S, Padilla G, Thomas A. Screening bacterial metabolites for inhibitory effects against Batrachochytrium dendrobatidis using a spectrophotometric assay. Dis Aquat Organ. 2013;103: 77–85. https://doi.org/10.3354/dao02560 23482387

34. Germida JJ, Siciliano SD, Renato de Freitas J, Seib AM. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol. 1998;26: 43–50. https://doi.org/10.1016/S0168-6496(98)00020-8

35. Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, et al. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol. 2013;79: 7428–7438. https://doi.org/10.1128/AEM.01610-13 24056471

36. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72: 1719–1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006 16517615

37. Joshi P, Bhatt AB. Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Env Sci. 2011;1: 1135–1143.

38. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol. 2016;56: 44–58. https://doi.org/10.1002/jobm.201500459 26567901

39. Alibrandi P, Cardinale M, Rahman MM, Strati F, Ciná P, de Viana ML, et al. The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacterium spp. and Staphylococcus spp. with potential plant-growth promoting activities. Plant Soil 2018;422(1–2): 81–99. doi: 10.1007/s11104-017-3182-4

40. Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD. Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain Cr11. Chemosphere 2012;86: 847–852. https://doi.org/10.1016/j.chemosphere.2011.11.031 22169713

41. Goswami RS, Kistler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol. 2004;5: 515–525. https://doi.org/10.1111/j.1364-3703.2004.00252.x 20565626

42. Paulitz TC, Zhou T, Rankin L. Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biol. Control 1992;2: 226–237. https://doi.org/10.1016/1049-9644(92)90063-J

43. Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol. 2001;47: 916–924. https://doi.org/10.1139/cjm-47-10-916 11718545

44. Sadfi N, Chérif M, Fliss I, Boudabbous A, Antoun H. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol. 2001;83: 101–117. http://dx.doi.org/10.4454/jpp.v83i2.1118

45. Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou PP, Katinakis P. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol. 2004;110: 35–44. https://doi.org/10.1023/B:EJPP.0000010132.91241.cb

46. Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun. 2018;9(1): 3429. doi: 10.1038/s41467-018-05683-7 30143616

47. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16: 115–125. https://doi.org/10.1016/j.tim.2007.12.009. 18289856

48. Barriuso J, Solano BR, Gutiérrez Mañero FJ. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathol. 2008; 98(6): 666–672. https://doi.org/10.1094/PHYTO-98-6-0666.

49. Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J Exp Bot. 2013;64(6): 1565–73. https://doi.org/10.1093/jxb/ert031. 23404897

50. Child R, Miller CD, Liang Y, Narasimham G, Chatterton J, Harrison P, et al. Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol. 2007;75(3): 655–663. doi: 10.1007/s00253-007-0840-0 17256117

51. Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, et al. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res. 2017;202: 11–20. doi: 10.1016/j.micres.2017.04.014 28647118

52. Conrath U, Thulke O, Katz V, Schwindling S, Kohler A. Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol. 2001;107: 113–119. https://doi.org/10.1023/A:1008768516313

53. Iavicoli A, Boutet E, Buchala A, Métraux J-P. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 2003;16: 851–858. https://doi.org/10.1094/MPMI.2003.16.10.851 14558686

54. Choudhary DK, Johri BN, Prakash A. Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci. 2008;94: 595–604. https://www.jstor.org/stable/24100299

55. Chagas FO, Pessotti R de C, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev. 2018;47(5): 1652–1704. doi: 10.1039/c7cs00343a 29218336

56. Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 2003;15(11): 2551–65. doi: 10.1105/tpc.014167 14555693

57. Dimkpa C, Weinand T, Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009;32: 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x 19671096

58. Vacheron J, Renoud S, Muller D, Babalola OO, Prigent-Combaret C. Alleviation of abiotic and biotic stresses in plants by Azospirillum. In: Cassan FD, Okon Y, Creus C, editors. Handbook for Azospirillum: Technical Issues and Protocols. Springer Berlin, Heidelberg; 2015. pp. 333–365.

59. Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. J Plant Physiol. 2015;176: 47–54. https://doi.org/10.1016/j.jplph.2014.11.008 25546584

60. Mithöfer A, Schulze B, Boland W. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 2004; 566: 1–5. https://doi.org/10.1016/j.febslet.2004.04.011 15147858

61. Achuo EA, Prinsen E, Höfte M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol. 2006;55: 178–186. https://doi.org/10.1111/j.1365-3059.2006.01340.x

62. Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L. Abiotic and biotic stress response crosstalk in plants. In: Shanker A, Venkateswarlu B. Abiotic stress response in plants-physiological, biochemical and genetic perspectives. InTechOpen; 2011. pp. 1–26. doi: 10.5772/23217

63. Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res. 2018;25(30): 29953–29970. doi: 10.1007/s11356-017-1152-2 29313197

64. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17: 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 22564542

65. Knudsen IMB, Hockenhull J, Jensen DF, Gerhardson B, Hökeberg M, Tahvonen R, et al. Selection of biological control agents for controlling soil and seed-borne diseases in the field. Eur J Plant Pathol. 1997;103: 775–784.

66. Pliego C, Ramos C, de Vicente A, Cazorla FM. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 2011;340: 505–520. https://doi.org/10.1007/s11104-010-0615-8


Článok vyšiel v časopise

PLOS One


2019 Číslo 12