Assessment of Phenotype Microarray plates for rapid and high-throughput analysis of collateral sensitivity networks
Autoři:
Elsie J. Dunkley aff001; James D. Chalmers aff002; Stephanie Cho aff002; Thomas J. Finn aff002; Wayne M. Patrick aff001
Působiště autorů:
Centre for Biodiscovery, School of Biological Sciences, Victoria University, Wellington, New Zealand
aff001; Department of Biochemistry, University of Otago, Dunedin, New Zealand
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0219879
Souhrn
The crisis of antimicrobial resistance is driving research into the phenomenon of collateral sensitivity. Sometimes, when a bacterium evolves resistance to one antimicrobial, it becomes sensitive to others. In this study, we have investigated the utility of Phenotype Microarray (PM) plates for identifying collateral sensitivities with unprecedented throughput. We assessed the relative resistance/sensitivity phenotypes of nine strains of Staphylococcus aureus (two laboratory strains and seven clinical isolates) towards the 72 antimicrobials contained in three PM plates. In general, the PM plates reported on resistance and sensitivity with a high degree of reproducibility. However, a rigorous comparison of PM growth phenotypes with minimum inhibitory concentration (MIC) measurements revealed a trade-off between throughput and accuracy. Small differences in PM growth phenotype did not necessarily correlate with changes in MIC. Thus, we conclude that PM plates are useful for the rapid and high-throughput assessment of large changes in collateral sensitivity phenotypes during the evolution of antimicrobial resistance, but more subtle examples of cross-resistance or collateral sensitivity cannot be identified reliably using this approach.
Klíčová slova:
Staphylococcus aureus – Methicillin-resistant Staphylococcus aureus – Antibiotics – Eyes – Antimicrobial resistance – Microarrays – Clinical laboratories – Broth microdilution
Zdroje
1. Szybalski W, Bryson V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol. 1952;64:489–99. 12999676
2. Hancock RE. Collateral damage. Nat Biotechnol. 2014;32:66–8. doi: 10.1038/nbt.2779 24406933
3. Pál C, Papp B, Lázár V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 2015;23:401–7. doi: 10.1016/j.tim.2015.02.009 25818802
4. Baym M, Stone LK, Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science. 2016;351:aad3292. doi: 10.1126/science.aad3292 26722002
5. Imamovic L, Sommer MO. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med. 2013;5:204ra132. 24068739
6. Lázár V, Singh GP, Spohn R, Nagy I, Horváth B, Hrtyan M, et al. Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol. 2013;9:700. 24169403
7. Oz T, Guvenek A, Yildiz S, Karaboga E, Tamer YT, Mumcuyan N, et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol. 2014;31:2387–401. doi: 10.1093/molbev/msu191 24962091
8. Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic resistance by gene expression profiles. Nat Commun. 2014;5:5792. doi: 10.1038/ncomms6792 25517437
9. Yen P, Papin JA. History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment. PLoS Biol. 2017;15:e2001586. doi: 10.1371/journal.pbio.2001586 28792497
10. Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci USA. 2014;111:14494–9. doi: 10.1073/pnas.1409800111 25246554
11. Rodriguez de Evgrafov M, Gumpert H, Munck C, Thomsen TT, Sommer MO. Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol Biol Evol. 2015;32:1175–85. doi: 10.1093/molbev/msv006 25618457
12. Nichol D, Rutter J, Bryant C, Hujer AM, Lek S, Adams MD, et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat Commun. 2019;10:334. doi: 10.1038/s41467-018-08098-6 30659188
13. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA. 2007;104:9451–6. doi: 10.1073/pnas.0609839104 17517606
14. Sieradzki K, Tomasz A. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol. 2003;185:7103–10. doi: 10.1128/JB.185.24.7103-7110.2003 14645269
15. Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet. 2015;16:459–71. doi: 10.1038/nrg3922 26149714
16. Podnecky NL, Fredheim EGA, Kloos J, Sørum V, Primicerio R, Roberts AP, et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat Commun. 2018;9:3673. doi: 10.1038/s41467-018-06143-y 30202004
17. Imamovic L, Ellabaan MMH, Dantas Machado AM, Citterio L, Wulff T, Molin S, et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell. 2018;172:121–34. doi: 10.1016/j.cell.2017.12.012 29307490
18. Rosenkilde CEH, Munck C, Porse A, Linkevicius M, Andersson DI, Sommer MOA. Collateral sensitivity constrains resistance evolution of the CTX-M-15 β-lactamase. Nat Commun. 2019;10:618. doi: 10.1038/s41467-019-08529-y 30728359
19. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75. doi: 10.1038/nprot.2007.521 18274517
20. Bochner BR, Gadzinski P, Panomitros E. Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 2001;11:1246–55. doi: 10.1101/gr.186501 11435407
21. Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev. 2009;33:191–205. doi: 10.1111/j.1574-6976.2008.00149.x 19054113
22. Soo VWC, Hanson-Manful P, Patrick WM. Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci USA. 2011;108:1484–9. doi: 10.1073/pnas.1012108108 21173244
23. Garland JL. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem. 1996;28:213–21.
24. Blumenstein K, Macaya-Sanz D, Martín JA, Albrectsen BR, Witzell J. Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Front Microbiol. 2015;6:1033. doi: 10.3389/fmicb.2015.01033 26441951
25. Johnson DA, Tetu SG, Phillippy K, Chen J, Ren Q, Paulsen IT. High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genet. 2008;4:e1000211. doi: 10.1371/journal.pgen.1000211 18833300
26. Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB, Allesoe RL, et al. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere. 2018;3:e00612–17. doi: 10.1128/mSphere.00612-17 29468193
27. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45:1323–36. doi: 10.1128/AAC.45.5.1323-1336.2001 11302791
28. Treangen TJ, Maybank RA, Enke S, Friss MB, Diviak LF, Karaolis DK, et al. Complete genome sequence of the quality control strain Staphylococcus aureus subsp. aureus ATCC 25923. Genome Announc. 2014;2:e01110–14. doi: 10.1128/genomeA.01110-14 25377701
29. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749–55. doi: 10.1086/647952 19857164
30. Jałowiecki Ł, Chojniak J, Dorgeloh E, Hegedusova B, Ejhed H, Magnér J, et al. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities. Folia Microbiol. 2017;62:453–61.
31. Obolski U, Dellus-Gur E, Stein GY, Hadany L. Antibiotic cross-resistance in the lab and resistance co-occurrence in the clinic: discrepancies and implications in E. coli. Infect Genet Evol. 2016;40:155–61. doi: 10.1016/j.meegid.2016.02.017 26883379
32. Lamy B, Laurent F, Verdier I, Decousser JW, Lecaillon E, Marchandin H, et al. Accuracy of 6 commercial systems for identifying clinical Aeromonas isolates. Diagn Microbiol Infect Dis. 2010;67:9–14. doi: 10.1016/j.diagmicrobio.2009.12.012 20167449
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- 100 let s metamizolem: jaké je jeho současné postavení v léčbě bolesti
- Masturbační chování žen v ČR − dotazníková studie