βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh-CML11) in Gossypium hirsutum


Autoři: Hira Kamal aff001;  Fayyaz-ul-Amir Afsar Minhas aff002;  Diwaker Tripathi aff004;  Wajid Arshad Abbasi aff002;  Muhammad Hamza aff001;  Roma Mustafa aff001;  Muhammad Zuhaib Khan aff001;  Shahid Mansoor aff001;  Hanu R. Pappu aff003;  Imran Amin aff001
Působiště autorů: National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan aff001;  Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan aff002;  Department of Plant Pathology, Washington State University, Pullman, WA, United States of America aff003;  Department of Biology, University of Washington, Seattle, WA, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225876

Souhrn

Begomoviruses interfere with host plant machinery to evade host defense mechanism by interacting with plant proteins. In the old world, this group of viruses are usually associated with betasatellite that induces severe disease symptoms by encoding a protein, βC1, which is a pathogenicity determinant. Here, we show that βC1 encoded by Cotton leaf curl Multan betasatellite (CLCuMB) requires Gossypium hirsutum calmodulin-like protein 11 (Gh-CML11) to infect cotton. First, we used the in silico approach to predict the interaction of CLCuMB-βC1 with Gh-CML11. A number of sequence- and structure-based in-silico interaction prediction techniques suggested a strong putative binding of CLCuMB-βC1 with Gh-CML11 in a Ca+2-dependent manner. In-silico interaction prediction was then confirmed by three different experimental approaches: The Gh-CML11 interaction was confirmed using CLCuMB-βC1 in a yeast two hybrid system and pull down assay. These results were further validated using bimolecular fluorescence complementation system showing the interaction in cytoplasmic veins of Nicotiana benthamiana. Bioinformatics and molecular studies suggested that CLCuMB-βC1 induces the overexpression of Gh-CML11 protein and ultimately provides calcium as a nutrient source for virus movement and transmission. This is the first comprehensive study on the interaction between CLCuMB-βC1 and Gh-CML11 proteins which provided insights into our understating of the role of βC1 in cotton leaf curl disease.

Klíčová slova:

Cotton – Leaves – Membrane proteins – Nicotiana – Protein interactions – Protein structure – Protein structure prediction – Sequence motif analysis


Zdroje

1. Mansoor S, Briddon RW, Zafar Y, Stanley J. Geminivirus disease complexes: an emerging threat. Trends Plant Sci. 2003;8(3):128–34. doi: 10.1016/S1360-1385(03)00007-4 12663223

2. Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, et al. ICTV virus taxonomy profile: geminiviridae. J Gen Virol. 2017;98(2):131–3. doi: 10.1099/jgv.0.000738 28284245

3. Dry I, Krake LR, Rigden JE, Rezaian MA. A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci U S A. 1997;94(13):7088–93. doi: 10.1073/pnas.94.13.7088 9192696

4. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H. Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology. 1991;185(1):151–61. doi: 10.1016/0042-6822(91)90763-2 1926771

5. Willment JA, Martin DP, Rybicki EP. Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data. J Virol Methods. 2001;93:75–87. doi: 10.1016/s0166-0934(00)00299-8 11311346

6. Briddon RW, Lunness P, Chamberlin LCL, Pinner MS, Brundish H, Markham PG. The nucleotide sequence of an infectious insect-transmissible clone of the geminivirus Panicum streak virus. J Gen Virol. 1992;73(5):1041–7. doi: 10.1099/0022-1317-73-5-1041 1588314

7. Varsani A, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Brown J, et al. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol. 2014;159(8):2193–203. doi: 10.1007/s00705-014-2050-2 24658781

8. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, et al. Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol. 2017;162(6):1819–31. doi: 10.1007/s00705-017-3268-6 28213872

9. Briddon RW, Martin DP, Roumagnac P, Navas-Castillo J, Fiallo-Olivé E, Moriones E, et al. Alphasatellitidae: A new family with two subfamilies for the classification of geminivirus-and nanovirus-associated alphasatellites. Arch Virol. 2018:1–14. doi: 10.1007/s00705-017-3569-9 PMID: 29740680

10. Fiallo-Olivé E, Martínez-Zubiaur Y, Moriones E, Navas-Castillo J. A novel class of DNA satellites associated with New World begomoviruses. Virology. 2012;426(1):1–6. Epub 2012/02/15. doi: 10.1016/j.virol.2012.01.024 22330203

11. Mansoor S, Amin I, Iram S, Hussain M, Zafar Y, Malik K, et al. Breakdown of resistance in cotton to cotton leaf curl disease in Pakistan. Plant Pathol. 2003;52(6):784. https://doi.org/10.1111/j.1365-3059.2003.00893.x.

12. Briddon RW, Markham PG. Cotton leaf curl virus disease. Virus Res. 2000;71(1–2):151–9. doi: 10.1016/s0168-1702(00)00195-7 11137169

13. Fauquet C, Stanley J. Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol. 2003;142:165–89. https://doi.org/10.1111/j.1744-7348.2003.tb00241.x

14. Zubair M, Zaidi SS-e-A, Shakir S, Farooq M, Amin I, Scheffler JA, et al. Multiple begomoviruses found associated with cotton leaf curl disease in Pakistan in early 1990 are back in cultivated cotton. Sci Rep. 2017;7(1):680. doi: 10.1038/s41598-017-00727-2 28386113

15. Saunders K, Norman A, Gucciardo S, Stanley J. The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology. 2004;324(1):37–47. doi: 10.1016/j.virol.2004.03.018 15183051

16. Cui X, Tao X, Xie Y, Fauquet CM, Zhou X. A DNA β associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol. 2004;78(24):13966–74. doi: 10.1128/JVI.78.24.13966-13974.2004 15564504

17. Akhter A, Qazi J, Saeed M, Mansoor S. A severe leaf curl disease on chilies in Pakistan is associated with multiple begomovirus components. Plant Dis. 2009;93(9):962. https://doi.org/10.1094/PDIS-93-9-0962B

18. Axtell MJ, Bartel DP. Antiquity of MicroRNAs and Their Targets in Land Plants. Plant Cell. 2005;17(6):1658–73. doi: 10.1105/tpc.105.032185 15849273

19. Abarshi MM, Mohammed IU, Jeremiah SC, Legg JP, Kumar PL, Hillocks RJ, et al. Multiplex RT-PCR assays for the simultaneous detection of both RNA and DNA viruses infecting cassava and the common occurrence of mixed infections by two cassava brown streak viruses in East Africa. J Virol Methods. 2011;179(1):176–84. doi: 10.1016/j.jviromet.2011.10.020 22080852

20. Angel CA, Hsieh Y-C, Schoelz JE. Comparative analysis of the capacity of Tombusvirus P22 and P19 proteins to function as avirulence determinants in Nicotiana species. Mol Plant-Microbe Interact. 2011;24(1):91–9. doi: 10.1094/MPMI-04-10-0089 20977306

21. Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 2014;10(2):e1003921. doi: 10.1371/journal.ppat.1003921 24516387

22. Chung HY, Lacatus G, Sunter G. Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology. 2014;460:108–18. doi: 10.1016/j.virol.2014.04.034 25010276

23. Snedden WA, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci. 1998;3(8):299–304. https://doi.org/10.1016/S1360-1385(98)01284-9

24. Chigri F, Flosdorff S, Pilz S, Kölle E, Dolze E, Gietl C, et al. The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. Plant Mol Biol. 2012;78(3):211–22. doi: 10.1007/s11103-011-9856-z 22116655

25. Mohanta TK, Kumar P, Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol. 2017;17(1):38. doi: 10.1186/s12870-017-0989-3 28158973

26. Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, et al. Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog. 2010;6(1):1000729. doi: 10.1371/journal.ppat.1000729 20084269

27. Chiasson D, Ekengren SK, Martin GB, Dobney SL, Snedden WA. Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato. Plant Mol Biol. 2005;58(6):887–97. doi: 10.1007/s11103-005-8395-x 16240180

28. McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol. 2003;159(3):585–98. doi: 10.3389/fpls.2017.00877 PMID: 28596783

29. Cheng H-Q, Han L-B, Yang C-L, Wu X-M, Zhong N-Q, Wu J-H, et al. The cotton MYB108 forms a positive feedback regulation loop with GH-CML11 and participates in the defense response against Verticillium dahliae infection. J Exp Bot. 2016:erw016. doi: 10.1093/jxb/erw016 26873979

30. McCormack E, Tsai Y-C, Braam J. Handling calcium signaling: arabidopsis CaMs and CMLs. Trends Plant Sci. 2005;10(8):383–9. doi: 10.1016/j.tplants.2005.07.001 16023399

31. Leba LJ, Cheval C, Ortiz‐Martín I, Ranty B, Beuzón CR, Galaud JP, et al. CML9, an Arabidopsis calmodulin‐like protein, contributes to plant innate immunity through a flagellin‐dependent signalling pathway. Plant J. 2012;71(6):976–89. doi: 10.1111/j.1365-313X.2012.05045.x 22563930

32. Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, et al. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci U S A 2012;109(25):10113–8. doi: 10.1073/pnas.1201628109 22665793

33. Chen Y, Xue S, Zhou Y, Yang JJ. Calciomics: prediction and analysis of EF-hand calcium binding proteins by protein engineering. Sci China Chem. 2010;53(1):52–60. doi: 10.1007/s11426-010-0011-5 20802784

34. Ma D-C, Diao Y-B, Guo Y-Z, Li Y-Z, Zhang Y-Q, Wu J, et al. A novel method to predict protein-protein interactions based on the information of protein-protein interaction networks and protein sequence. Protein Pept Lett. 2011;18(9):906–11. doi: 10.2174/092986611796011482 21529343

35. Esmaielbeiki R, Krawczyk K, Knapp B, Nebel J-C, Deane CM. Progress and challenges in predicting protein interfaces. Brief Bioinform. 2015;17(1):117–31. doi: 10.1093/bib/bbv027 25971595

36. Zhou H-X, Qin S. Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics. 2007;23(17):2203–9. doi: 10.1093/bioinformatics/btm323 17586545

37. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9(1):40. doi: 10.1186/1471-2105-9-40 18215316

38. Abbasi WA, Asif A, Andleeb S, Minhas FUAA. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites. Proteins: Struct Funct Bioinf. 2017;85(9):1724–40. doi: 10.1002/prot.25330 28598584

39. Yugandhar K, Gromiha MM. Protein-protein binding affinity prediction from amino acid sequence. Bioinformatics. 2014;30(24):3583–9. doi: 10.1093/bioinformatics/btu580 25172924

40. Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A. PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res. 2014;42:285–9. doi: 10.1093/nar/gku397 24829450

41. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. 2016;32(23):3676–8. doi: 10.1093/bioinformatics/btw514 27503228

42. Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997;11(5):331–40. doi: 10.1096/fasebj.11.5.9141499 9141499

43. Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M. Calmodulin target database. J struct Funct Genomics. 2000;1(1):8–14. doi: 10.1023/a:1011320027914 12836676

44. Mruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 2014;144(1):105–14. doi: 10.1085/jgp.201311140 24935744

45. Mukherjee S, Zhang Y. Protein-Protein Complex Structure Predictions by Multimeric Threading and Template Recombination. Structure. 2011;19(7):955–66. doi: 10.1016/j.str.2011.04.006 21742262

46. Xue LC, Dobbs D, Honavar V. HomPPI: a class of sequence homology based protein-protein interface prediction methods. BMC Bioinformatics. 2011;12(1):244. doi: 10.1186/1471-2105-12-244 21682895

47. Murakami Y, Mizuguchi K. Applying the Naive Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites. Bioinformatics. 2010;26. doi: 10.1093/bioinformatics/btq302 20529890

48. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, et al. PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014;42:337–43. doi: 10.1093/nar/gku366 24799431

49. Ahmad S, Mizuguchi K. Partner-aware prediction of interacting residues in protein-protein complexes from sequence data. PLoS ONE. 2011;6(12):29104. doi: 10.1371/journal.pone.0029104 22194998

50. De Vries SJ, Bonvin AM. CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS ONE. 2011;6(3):17695. doi: 10.1371/journal.pone.0017695 21464987

51. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics. 2014;30(12):1771–3. doi: 10.1093/bioinformatics/btu097 24532726

52. Lyskov S, Chou FC, Conchuir SO, Der BS, Drew K, Kuroda D, et al. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS ONE. 2013;8(5):e63906. Epub 2013/05/30. doi: 10.1371/journal.pone.0063906 23717507

53. Minhas F, Geiss BJ, Ben-Hur A. PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins. 2014;82(7):1142–55. Epub 2013/11/19. doi: 10.1002/prot.24479 24243399

54. Bologna G, Yvon C, Duvaud S, Veuthey AL. N‐Terminal myristoylation predictions by ensembles of neural networks. Proteomics. 2004;4(6):1626–32. doi: 10.1002/pmic.200300783 15174132

55. Maurer-Stroh S, Eisenhaber B, Eisenhaber F. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence1. J Mol Biol. 2002;317(4):541–57. doi: 10.1006/jmbi.2002.5426 11955008

56. Guo F, Chiang MY, Wang Y, Zhang YZ. An in vitro recombination method to convert restriction‐and ligation‐independent expression vectors. Biotechnol J. 2008;3(3):370–7. doi: 10.1002/biot.200700170 18064608

57. Gyuris J, Golemis E, Chertkov H, Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993;75(4):791–803. doi: 10.1016/0092-8674(93)90498-f 8242750

58. Li Y, Leisner SM. Multiple domains within the Cauliflower mosaic virus gene VI product interact with the full-length protein. Mol Plant Microbe Interact. 2002;15(10):1050–7. doi: 10.1094/MPMI.2002.15.10.1050 12437303

59. Hapiak M, Li Y, Agama K, Swade S, Okenka G, Falk J, et al. Cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. Virus Res. 2008;138(1–2):119–29. doi: 10.1016/j.virusres.2008.09.002 18851998

60. Tripathi D, Raikhy G, Goodin MM, Dietzgen RG, Pappu HR. In vivo localization of iris yellow spot tospovirus (Bunyaviridae)-encoded proteins and identification of interacting regions of nucleocapsid and movement proteins. PLoS ONE. 2015;10(3):e0118973. doi: 10.1371/journal.pone.0118973 25781476

61. Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 2009;59(1):150–62. doi: 10.1111/j.1365-313X.2009.03850.x 19309457

62. Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, et al. Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog. 2010;6(1):e1000729. doi: 10.1371/journal.ppat.1000729 20084269

63. Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA b satellite. Mol Plant Microbe Interact. 2009;22(6):737–46. doi: 10.1094/MPMI-22-6-0737 19445598

64. Ursic D, Chinchilla K, Finkel JS, Culbertson MR. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription‐coupled DNA repair and RNA processing. Nucleic Acids Res. 2004;32(8):2441–52. doi: 10.1093/nar/gkh561 15121901

65. DeFalco TA, Bender KW, Snedden WA. Breaking the code: Ca2+ sensors in plant signalling. Biochem J. 2010;425(1):27–40. doi: 10.1042/BJ20091147 20001960

66. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JC, et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol. 2015;160(6):1593–619. doi: 10.1007/s00705-015-2398-y 25894478

67. Zhou X. Advances in understanding begomovirus satellites. Ann Rev Phytopathol. 2013;51(1):357–81. doi: 10.1146/annurev-phyto-082712-102234 23915133

68. Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J. 2011;8(1):143. doi: 10.1186/1743-422X-8-143 21447165

69. Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, et al. Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife. 2017;6:e23897. doi: 10.7554/eLife.23897 28244873

70. Saeed M, Zafar Y, Randles JW, Rezaian MA. A monopartite begomovirus-associated DNA β satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol. 2007;88(10):2881–9. doi: 10.1099/vir.0.83049-0 17872543

71. Cui X, Li G, Wang D, Hu D, Zhou X. A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol. 2005;79(16):10764–75. doi: 10.1128/JVI.79.16.10764-10775.2005 16051868

72. Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, et al. CLCuMuB βC1 subverts Ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathog. 2016;12(6):e1005668. doi: 10.1371/journal.ppat.1005668 27315204

73. Westerlund AM, Delemotte L. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin. PLoS Comput Biol. 2018;14(4):1006072. doi: 10.1371/journal.pcbi.1006072 29614072

74. Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, et al. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog. 2017;13(2):e1006213. doi: 10.1371/journal.ppat.1006213 28212430


Článok vyšiel v časopise

PLOS One


2019 Číslo 12