Quantification of circulating cell-free DNA (cfDNA) in urine using a newborn piglet model of asphyxia


Autoři: Polona Rajar aff001;  Monica Åsegg-Atneosen aff001;  Ola Didrik Saugstad aff001;  Rønnaug Solberg aff001;  Lars Oliver Baumbusch aff001
Působiště autorů: Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway aff001;  University of Oslo, Oslo, Norway aff002;  Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227066

Souhrn

Cell free DNA (cfDNA) in plasma has been described as a potential diagnostic indicator for a variety of clinical conditions, including neonatal hypoxia. Neonatal hypoxia or perinatal asphyxia is a severe medical condition caused by a temporary interruption in oxygen availability during birth. Previously, we have reported temporal changes of cfDNA detected in blood in a newborn piglet model of perinatal asphyxia. However, cfDNA can also be found in other body liquids, opening for a less invasive diagnostic prospective. The objective of this study was to test and establish a reliable method for the isolation and quantification of cfDNA from urine and to explore changes in the quantities of cfDNA using a newborn piglet model of asphyxia. Animals were exposed to hypoxia-reoxygenation (n = 6), hypoxia-reoxygenation + hypothermia (n = 6) or were part of the sham-operated control group (n = 6) and urine samples (n = 18) were collected at 570 minutes post-intervention. Two alternative applications of cfDNA measurement were tested, an indirect method comprising a centrifugation step together with DNA extraction with magnetic beads versus a direct assessment based on two centrifugation steps. CfDNA concentrations were determined by a fluorescent assay using PicoGreen and by qRT-PCR. Genomic (gDNA) and mitochondrial DNA (mtDNA) cfDNA were determined in parallel, taking into account potential differences in the rates of damages caused by oxidative stress. In contrast to previous publications, our results indicate that the direct method is insufficient. Application of the indirect method obtained with the fluorescence assay revealed mean cfDNA levels (SD) of 1.23 (1.76) ng/ml for the hypoxia samples, 4.47 (6.15) ng/ml for the samples exposed to hypoxia + hypothermia and 2.75 (3.62) ng/ml for the control animals. The mean cfDNA levels in piglets exposed to hypoxia + hypothermia revealed significantly higher cfDNA amounts compared to mean cfDNA levels in the samples purely exposed to hypoxia (p < 0.05); however, no significant difference could be determined when compared to the control group (p = 0.09). Application of the indirect method by qRT-PCR revealed mean cfDNA levels of mtDNA and gDNA at the detection limit of the technique and thus no reliable statistics could be performed between the observed cfDNA levels in the investigated groups. The methodology for detection and monitoring of cfDNA in urine has to be further optimized before it can be applied in a clinical setting in the future.

Klíčová slova:

Blood – Blood plasma – Mitochondrial DNA – Asphyxia – Hypoxia – Urine – Pig models – Hypothermia


Zdroje

1. Czeiger D, Shaked G, Eini H, Vered I, Belochitski O, Avriel A, et al. Measurement of circulating cell-free DNA levels by a new simple fluorescent test in patients with primary colorectal cancer. Am J Clin Pathol. 2011 Feb;135(2):264–70. doi: 10.1309/AJCP4RK2IHVKTTZV 21228367

2. Breitbach S, Tug S, Helmig S, Zahn D, Kubiak T, Michal M, et al. Direct Quantification of Cell-Free, Circulating DNA from Unpurified Plasma. PLOS ONE. 2014 Mar 3;9(3):e87838. doi: 10.1371/journal.pone.0087838 24595313

3. Vlassov VV, Laktionov PP, Rykova EY. Circulating nucleic acids as a potential source for cancer biomarkers. Curr Mol Med. 2010 Mar;10(2):142–65. doi: 10.2174/156652410790963295 20196731

4. Gahan PB. Circulating nucleic acids in plasma and serum: roles in diagnosis and prognosis in diabetes and cancer. Infect Disord Drug Targets. 2008 Jun;8(2):100–8. doi: 10.2174/187152608784746484 18537705

5. Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res. 2007 Jun;635(2–3):105–17. doi: 10.1016/j.mrrev.2006.11.002 17257890

6. Gillam-Krakauer M, Gowen CW Jr. Birth Asphyxia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019. Available from: http://www.ncbi.nlm.nih.gov/books/NBK430782/

7. Saugstad OD, Sejersted Y, Solberg R, Wollen EJ, Bjørås M. Oxygenation of the newborn: a molecular approach. Neonatology. 2012;101(4):315–25. doi: 10.1159/000337345 22940621

8. Singh G, Pachouri UC, Khaidem DC, Kundu A, Chopra C, Singh P. Mitochondrial DNA Damage and Diseases. F1000Research. 2015;4:176. doi: 10.12688/f1000research.6665.1 27508052

9. Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012 Jan;226(2):274–86. doi: 10.1002/path.3028 21989606

10. Tuaeva NO, Abramova ZI, Sofronov VV. The origin of elevated levels of circulating DNA in blood plasma of premature neonates. Ann N Y Acad Sci. 2008 Aug;1137:27–30. doi: 10.1196/annals.1448.043 18837920

11. Manueldas S, Benterud T, Rueegg CS, Garberg HT, Huun MU, Pankratov L, et al. Temporal patterns of circulating cell-free DNA (cfDNA) in a newborn piglet model of perinatal asphyxia. PloS One. 2018;13(11):e0206601. doi: 10.1371/journal.pone.0206601 30475817

12. Akhter W, Ashraf QM, Zanelli SA, Mishra OP, Delivoria-Papadopoulos M. Effect of graded hypoxia on cerebral cortical genomic DNA fragmentation in newborn piglets. Biol Neonate. 2001;79(3–4):187–93. doi: 10.1159/000047089 11275649

13. Umansky SR, Tomei LD. Transrenal DNA testing: progress and perspectives. Expert Rev Mol Diagn. 2006 Mar;6(2):153–63. doi: 10.1586/14737159.6.2.153 16512776

14. Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell‐free DNA in the human body: a critical re‐evaluation of the literature. Biol Rev. 2018 Aug 1;93(3):1649–83. doi: 10.1111/brv.12413 29654714

15. Anker P, Stroun M, Maurice PA. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975 Sep;35(9):2375–82. 1149042

16. Tamkovich SN, Cherepanova AV, Kolesnikova EV, Rykova EY, Pyshnyi DV, Vlassov VV, et al. Circulating DNA and DNase activity in human blood. Ann N Y Acad Sci. 2006 Sep;1075:191–6. doi: 10.1196/annals.1368.026 17108211

17. Fatouros IG, Jamurtas AZ, Nikolaidis MG, Destouni A, Michailidis Y, Vrettou C, et al. Time of sampling is crucial for measurement of cell-free plasma DNA following acute aseptic inflammation induced by exercise. Clin Biochem. 2010 Nov;43(16–17):1368–70. doi: 10.1016/j.clinbiochem.2010.08.020 20800058

18. Huang DJ, Zimmermann BG, Holzgreve W, Hahn S. Use of an automated method improves the yield and quality of cell-free fetal DNA extracted from maternal plasma. Clin Chem. 2005 Dec;51(12):2419–20. doi: 10.1373/clinchem.2005.056010 16306116

19. Wagner J. Free DNA—new potential analyte in clinical laboratory diagnostics? Biochem Medica. 2012;22(1):24–38.

20. Sharma VK, Vouros P, Glick J. Mass spectrometric based analysis, characterization and applications of circulating cell free DNA isolated from human body fluids. Int J Mass Spectrom. 2011 Jul;304(2–3):172–83. doi: 10.1016/j.ijms.2010.10.003 21765648

21. Wang M, Block TM, Steel L, Brenner DE, Su Y-H. Preferential isolation of fragmented DNA enhances the detection of circulating mutated k-ras DNA. Clin Chem. 2004 Jan;50(1):211–3. doi: 10.1373/clinchem.2003.026914 14709652

22. Benterud T, Pankratov L, Solberg R, Bolstad N, Skinningsrud A, Baumbusch L, et al. Perinatal Asphyxia May Influence the Level of Beta-Amyloid (1–42) in Cerebrospinal Fluid: An Experimental Study on Newborn Pigs. PloS One. 2015;10(10):e0140966. doi: 10.1371/journal.pone.0140966 26501201

23. Garberg HT, Huun MU, Baumbusch LO, Åsegg-Atneosen M, Solberg R, Saugstad OD. Temporal Profile of Circulating microRNAs after Global Hypoxia-Ischemia in Newborn Piglets. Neonatology. 2017;111(2):133–9. doi: 10.1159/000449032 27750254

24. El Bali L, Diman A, Bernard A, Roosens NHC, De Keersmaecker SCJ. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies. J Biomol Tech JBT. 2014 Dec;25(4):96–110. doi: 10.7171/jbt.14-2504-002 25365790

25. Goldshtein H, Hausmann MJ, Douvdevani A. A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids. Ann Clin Biochem. 2009 Nov;46(Pt 6):488–94. doi: 10.1258/acb.2009.009002 19729503

26. Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. Understanding urine tests. Institute for Quality and Efficiency in Health Care (IQWiG); 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279350/

27. Lu T, Li J. Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am J Cancer Res. 2017 Nov 1;7(11):2318–32. 29218253

28. Chang Y, Tolani B, Nie X, Zhi X, Hu M, He B. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring. Ther Clin Risk Manag. 2017 Oct 11;13:1363–74. doi: 10.2147/TCRM.S141991 29066904

29. Bratz M, Ray R, White D, Horejsh D, Wieczorek D, Vincent E, et al. Automated Circulating Cell-Free DNA Purification from Large Volume Draws.:1.

30. Bryzgunova OE, Laktionov PP. Extracellular Nucleic Acids in Urine: Sources, Structure, Diagnostic Potential. Acta Naturae. 2015 Sep;7(3):48–54. 26483959

31. Fleischhacker M, Schmidt B, Weickmann S, Fersching DMI, Leszinski GS, Siegele B, et al. Methods for isolation of cell-free plasma DNA strongly affect DNA yield. Clin Chim Acta Int J Clin Chem. 2011 Nov 20;412(23–24):2085–8.

32. Siddiqui H, Nederbragt AJ, Jakobsen KS. A solid-phase method for preparing human DNA from urine for diagnostic purposes. Clin Biochem. 2009 Jul;42(10–11):1128–35. doi: 10.1016/j.clinbiochem.2009.03.010 19303866

33. Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol. 2006 Dec;73(3):495–504. doi: 10.1007/s00253-006-0675-0 17063328

34. Nakashima C, Sato A, Abe T, Kato J, Hirai M, Nakamura T, et al. Automated DNA extraction using cellulose magnetic beads can improve EGFR point mutation detection with liquid biopsy by efficiently recovering short and long DNA fragments. Oncotarget. 2018 May 18;9(38):25181–92. doi: 10.18632/oncotarget.25388 29861862

35. Su Y-H, Song J, Wang Z, Wang X-H, Wang M, Brenner DE, et al. Removal of high-molecular-weight DNA by carboxylated magnetic beads enhances the detection of mutated K-ras DNA in urine. Ann N Y Acad Sci. 2008 Aug;1137:82–91. doi: 10.1196/annals.1448.019 18837929

36. Norton SE, Lechner JM, Williams T, Fernando MR. A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clin Biochem. 2013 Oct 1;46(15):1561–5. doi: 10.1016/j.clinbiochem.2013.06.002 23769817

37. Thornton B, Basu C. Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ Bimon Publ Int Union Biochem Mol Biol. 2011 Apr;39(2):145–54.

38. Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 2005 Jul;206(3):291–304. doi: 10.1002/path.1778 15906272

39. Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, et al. Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res. 2011 May;19(4):603–27. doi: 10.1007/s12640-010-9208-9 20645042

40. Breitbach S, Tug S, Simon P. Circulating Cell-Free DNA. Sports Med. 2012 Jul 1;42(7):565–86. doi: 10.2165/11631380-000000000-00000 22694348


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň