A simplistic approach of algal biofuels production from wastewater using a Hybrid Anaerobic Baffled Reactor and Photobioreactor (HABR-PBR) System

Autoři: Md. Khalekuzzaman aff001;  Muhammed Alamgir aff001;  Md. Bashirul Islam aff001;  Mehedi Hasan aff001
Působiště autorů: Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225458


The current technologies of algal biofuels production and wastewater treatment (e.g., aerobic) process are still in question, due to the significant amount of fresh water and nutrients requirements for microalgae cultivation, and negative energy balance in both processes, especially when considered in the context of developing counties around the world. In this research, a simplistic sustainable approach of algal biofuels production from wastewater was proposed using a Hybrid Anaerobic Baffled Reactor (HABR) and Photobioreactor (PBR) system. The study suggests that the HABR was capable of removing most of the organic and solid (>90% COD and TSS removal) from wastewater, and produced a healthy feedstock (high N: P = 3:1) for microalgae cultivation in PBRs for biofuels production. A co-culture of Chlorella vulgaris, Chlorella sorokiniana, and Scenedesmus simris002 showed high lipid content up to 44.1%; and the dominant FAMEs composition (C16-C18) of 87.9% in produced biofuels. Perhaps, this proposed low-cost technological approach (e.g., HABR-PBR system) would connect the currently broken link of sustainable bioenergy generation and wastewater treatment pathway for developing countries.

Klíčová slova:

Algae – Daylight – Effluent – Lipids – Sludge – Turbidity – Biodiesel – Biofuels


1. Sato T, Qadir M, Yamamoto S, Endo T, Zahoor A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric Water Manag. 2013;130: 1–13. doi: 10.1016/j.agwat.2013.08.007

2. Libhaber M. Sustainable Treatment and Reuse of Municipal Wastewater: For Decision Makers and Practicing Engineers. Water Intell Online. 2012;11. doi: 10.2166/9781780400631

3. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25: 464–482. doi: 10.1016/j.biotechadv.2007.05.004 17582720

4. Pienkos PT. The Potential for Biofuels from Algae. 2007; 22.

5. Waltz E. Algal biofuels questioned. Nat Biotechnol. 2013;31: 12–12. doi: 10.1038/nbt0113-12a

6. Shoener BD, Bradley IM, Cusick RD, Guest JS. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Env Sci Process Impacts. 2014;16: 1204–1222. doi: 10.1039/C3EM00711A 24671159

7. Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels. 2014;5: 331–349. doi: 10.1080/17597269.2014.913925

8. Salama E-S, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang I-S, Min B, et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev. 2017;79: 1189–1211. doi: 10.1016/j.rser.2017.05.091

9. Zhang X, Rong J, Chen H, He C, Wang Q. Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection. Front Energy Res. 2014;2. doi: 10.3389/fenrg.2014.00032

10. Feng H, Hu L, Mahmood Q, Fang C, Qiu C, Shen D. Effects of temperature and feed strength on a carrier anaerobic baffled reactor treating dilute wastewater. Desalination. 2009;239: 111–121. doi: 10.1016/j.desal.2008.03.011

11. Liew Abdullah AG, Idris A, Ahmadun FR, Baharin BS, Emby F, Megat Mohd Noor MJ, et al. A kinetic study of a membrane anaerobic reactor (MAR) for treatment of sewage sludge. Desalination. 2005;183: 439–445. doi: 10.1016/j.desal.2005.03.044

12. Zhu G, Zou R, Jha AK, Huang X, Liu L, Liu C. Recent Developments and Future Perspectives of Anaerobic Baffled Bioreactor for Wastewater Treatment and Energy Recovery. Crit Rev Environ Sci Technol. 2015;45: 1243–1276. doi: 10.1080/10643389.2014.924182

13. Chan YJ, Chong MF, Law CL, Hassell DG. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J. 2009;155: 1–18. doi: 10.1016/j.cej.2009.06.041

14. Reynaud N, Buckley CA. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review. Water Sci Technol. 2016;73: 463–478. doi: 10.2166/wst.2015.539 26877027

15. Bwapwa JK. Treatment Efficiency of an Anaerobic Baffled Reactor Treating Low Biodegradable and Complex Particulate Wastewater (blackwater) in an ABR Membrane Bioreactor Unit(MBR-ABR). Int J Environ Pollut Remediat. 2012; doi: 10.11159/ijepr.2012.008

16. . Wastewater engineering: treatment and reuse [Internet]. Fourth edition / revised by George Tchobanoglous, Burton Franklin L., Stensel H. David. Boston: McGraw-Hill, [2003] 2003; 2003. Available: https://search.library.wisc.edu/catalog/999935704402121

17. Khalekuzzaman M, Hasan M, Haque R, Alamgir M. Hydrodynamic performance of a hybrid anaerobic baffled reactor (HABR): effects of number of chambers, hydraulic retention time, and influent temperature. Water Sci Technol. 2018; 15.

18. Cho S, Luong TT, Lee D, Oh Y-K, Lee T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol. 2011;102: 8639–8645. doi: 10.1016/j.biortech.2011.03.037 21474308

19. Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011;102: 101–105. doi: 10.1016/j.biortech.2010.06.016 20620053

20. Hu B, Min M, Zhou W, Li Y, Mohr M, Cheng Y, et al. Influence of Exogenous CO2 on Biomass and Lipid Accumulation of Microalgae Auxenochlorella protothecoides Cultivated in Concentrated Municipal Wastewater. Appl Biochem Biotechnol. 2012;166: 1661–1673. doi: 10.1007/s12010-012-9566-2 22367636

21. Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnol Bioeng. 2012;109: 2222–2229. doi: 10.1002/bit.24491 22407758

22. Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol. 2011;102: 5138–5144. doi: 10.1016/j.biortech.2011.01.091 21353532

23. Wu LF, Chen PC, Huang AP, Lee CM. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol. 2012;113: 14–18. doi: 10.1016/j.biortech.2011.12.128 22269054

24. Feng H, Hu L, Mahmood Q, Qiu C, Fang C, Shen D. Anaerobic domestic wastewater treatment with bamboo carrier anaerobic baffled reactor. Int Biodeterior Biodegrad. 2008;62: 232–238. doi: 10.1016/j.ibiod.2008.01.009

25. Nachaiyasit S, Stuckey DC. Effect of Low Temperatures on the Performance of an Anaerobic Baffled Reactor (ABR). J Chem Technol Biotechnol. 1997;69: 276–284. doi: 10.1002/(SICI)1097-4660(199706)69:2<276::AID-JCTB711>3.0.CO;2-T

26. Wu P, Peng Q, Xu L, Wang J, Huang Z, Zhang J, et al. Effects of temperature on nutrient removal performance of a pilot-scale ABR/MBR combined process for raw wastewater treatment. Desalination Water Treat. 2016;57: 12074–12081. doi: 10.1080/19443994.2015.1048741

27. APHA, AWWA, AEF. Standard Methods for the Examination of Water & Wastewater. American Public Health Association, Washington, DC, USA; 2005.

28. Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol. 2018;38: 690–703. doi: 10.1080/07388551.2017.1390728 29233009

29. Jena J, Nayak M, Sekhar Panda H, Pradhan N, Sarika C, Ku. Panda P, et al. Microalgae of Odisha Coast as a Potential Source for Biodiesel Production. World Environ. 2012;2: 12–17. doi: 10.5923/j.env.20120201.03

30. Ravindran B, Gupta S, Cho W-M, Kim J, Lee S, Jeong K-H, et al. Microalgae Potential and Multiple Roles—Current Progress and Future Prospects—An Overview. Sustainability. 2016;8: 1215. doi: 10.3390/su8121215

31. Bark M. Cultivation of eleven different species of freshwater microalgae using simulated flue gas mimicking effluents from paper mills as carbon source. Chalmers University of Technology. 2012.

32. Rhee G-Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake 1: Dual nutrient limitation. Limnol Oceanogr. 1978;23: 10–25. doi: 10.4319/lo.1978.23.1.0010

33. Choi HJ, Lee SM. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng. 2015;38: 761–766. doi: 10.1007/s00449-014-1317-z 25362890

34. Ansari AA, Khoja AH, Nawar A, Qayyum M, Ali E. Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production. Appl Water Sci. 2017;7: 4151–4158. doi: 10.1007/s13201-017-0574-9

35. Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102: 3071–3076. doi: 10.1016/j.biortech.2010.10.047 21041075

36. Axelsson M, Gentili F. A Single-Step Method for Rapid Extraction of Total Lipids from Green Microalgae. Kusano M, editor. PLoS ONE. 2014;9: e89643. doi: 10.1371/journal.pone.0089643 24586930

37. Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 2010;89: 677–684. doi: 10.1016/j.fuel.2009.10.011

38. Meher LC, Dharmagadda VSS, Naik SN. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol. 2006;97: 1392–1397. doi: 10.1016/j.biortech.2005.07.003 16359862

39. Gour RS, Chawla A, Singh H, Chauhan RS, Kant A. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock. Kumar S, editor. PLOS ONE. 2016;11: e0155321. doi: 10.1371/journal.pone.0155321 27195694

40. Mahapatra DM, Ramachandra TV. Algal biofuel: bountiful lipid from Chlorococcum sp. proliferating in municipal wastewater. Curr Sci. 2013;105: 9.

41. Bodkhe SY. A modified anaerobic baffled reactor for municipal wastewater treatment. J Environ Manage. 2009;90: 2488–2493. doi: 10.1016/j.jenvman.2009.01.007 19233545

42. Lu J, Ma Y, Liu Y, Li M. Treatment of hypersaline wastewater by a combined neutralization–precipitation with ABR-SBR technique. Desalination. 2011;277: 321–324. doi: 10.1016/j.desal.2011.04.054

43. Saby S, Djafer M, Chen G-H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Res. 2003;37: 11–20. doi: 10.1016/s0043-1354(02)00253-1 12465783

44. Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D. Biological Wastewater Treatment: Principles, Modelling and Design. Water Intell Online. 2015;7: 9781780401867–9781780401867. doi: 10.2166/9781780401867

45. Khalekuzzaman M, Alamgir M, Hasan M, Hasan MN. Performance comparison of uninsulated and insulated hybrid anaerobic baffled reactor (HABR) operating at warm temperature. Water Sci Technol IWA Publ. 2018; 15. doi: 10.2166/wst.2018.401 30566092

46. Kishida N, Kim J, Tsuneda S, Sudo R. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Water Res. 2006;40: 2303–2310. doi: 10.1016/j.watres.2006.04.037 16766009

47. Schön G, Geywitz S, Mertens F. Influence of dissolved oxygen and oxidation-reduction potential on phosphate release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal. Water Res. 1993;27: 349–354. doi: 10.1016/0043-1354(93)90033-E

48. Hu Y, Hao X, van Loosdrecht M, Chen H. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Res. 2017;125: 11–22. doi: 10.1016/j.watres.2017.08.034 28822815

49. Lauenstein GG, Cantillo AY, Daley WM, James D, Foster BN, Lauenstein GG, et al. National Oceanic and Atmospheric Administration. 1998.

50. Mayers JJ, Flynn KJ, Shields RJ. Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresour Technol. 2013;148: 215–220. doi: 10.1016/j.biortech.2013.08.133 24050924

51. Elkady MF, Zaatout A, Balbaa O. Production of Biodiesel from Waste Vegetable Oil via KM Micromixer. J Chem. 2015;2015: 1–9. doi: 10.1155/2015/630168

52. Wahidin S, Idris A, Shaleh SRM. Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers Manag. 2014;84: 227–233. doi: 10.1016/j.enconman.2014.04.034

53. Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86: 1059–1070. doi: 10.1016/j.fuproc.2004.11.002

54. Knothe G. “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties †. Energy Fuels. 2008;22: 1358–1364. doi: 10.1021/ef700639e

55. Ngangkham M, Ratha S, Prasanna R, Saxena A, Dhar D, Sarika C, et al. Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. SpringerPlus. 2012;1: 33. doi: 10.1186/2193-1801-1-33 23961362

Článok vyšiel v časopise


2019 Číslo 12