Essential oil-incorporated carbon nanotubes filters for bacterial removal and inactivation


Autoři: Xiuli Dong aff001;  Ambrose E. Bond aff001;  Liju Yang aff001
Působiště autorů: Department of Pharmaceutical Sciences and Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227220

Souhrn

In this study, essential oils (EO)-incorporated multi-walled carbon nanotubes (MWCNTs) filters were developed for achieving dual functions in effective removing bacteria from aqueous solutions and inactivating bacteria cells captured on the filters. Tea tree essential oil (TTO), lemon essential oil (LEO), and TTO-LEO-mixture were coated on MWCNTs filters with different MWCNTs loadings ranging from 3 mg to 6 mg. MWCNTs filters with 6.0 mg MWCNTs showed complete removal (100%) of E. coli cells from PBS buffer with 6.35 log10 decrease of cell numbers. TTO, LEO, and TTO/LEO Mix (1:1) coatings at the volume of 50 μL on MWCNTs filters achieved bacterial removal rates of >98%, and highly effective inactivation efficiency. TTO coatings had the highest antimicrobial efficacies than LEO and Mix coatings, MWCNTs filters with 50 μL TTO coating showed 100% inhibitory rate of the captured bacteria on the filter surfaces. Those captured but survived cells on filters with less TTO coating (20μL) significantly reduced their salt tolerances to 30 and 40 g/L NaCl in LB agar, and became less salt tolerance with longer incubation time on the filters. The developed TTO-MWCNTs filters had much higher antimicrobial efficacies than the filters with dual functions developed previously.

Klíčová slova:

Bacteria – Cell membranes – Antimicrobials – Oils – Adsorption – Thin films – Coatings – Carbon nanotubes


Zdroje

1. Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP. Contamination of water resources by pathogenic bacteria. Amb Express. 2014;4. ARTN 51 doi: 10.1186/s13568-014-0051-x WOS:000358062300001. 25006540

2. Rose JB. Water, Sanitation and the Millennium Development Goals: A Report Card on Global Progress. Water quality and health. 2015:1–2.

3. Xu JG, Cheng BK, Jing HQ. Escherichia coli O157: H7 and Shiga-like-toxin-producing Escherichia coli in China. World J Gastroentero. 1999;5(3):191–4. WOS:000080926400002.

4. Dong XL, Al Awak M, Wang P, Sun YP, Yang LJ. Carbon dot incorporated multi-walled carbon nanotube coated filters for bacterial removal and inactivation. Rsc Adv. 2018;8(15):8292–301. doi: 10.1039/C8RA00333E WOS:000427502300049. 30220997

5. Tao LH, Wang W, Li L, Kramer PK, Pereira MA. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney. Toxicol Sci. 2005;87(2):344–52. doi: 10.1093/toxsci/kfi257 WOS:000231762500006. 16014735

6. Bove F, Shim Y, Zeitz P. Drinking water contaminants and adverse pregnancy outcomes: A review. Environ Health Persp. 2002;110:61–74. WOS:000174794900007.

7. Hrudey SE. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res. 2009;43(8):2057–92. doi: 10.1016/j.watres.2009.02.011 WOS:000266183100001. 19304309

8. Villanueva CM, Cantor KP, Cordier S, Jaakkola JJK, King WD, Lynch CF, et al. Disinfection byproducts and bladder cancer—A pooled analysis. Epidemiology. 2004;15(3):357–67. doi: 10.1097/01.ede.0000121380.02594.fc WOS:000221067400020. 15097021

9. Aidan A, Mehrvar M, Ibrahim TH, Nenov V. Particulates and bacteria removal by ceramic microfiltration, UV photolysis, and their combination. J Environ Sci Heal A. 2007;42(7):895–901. doi: 10.1080/10934520701369941 WOS:000247528400008. 17558770

10. Amin MT, Alazba AA, Manzoor U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv Mater Sci Eng. 2014. Artn 825910 doi: 10.1155/2014/825910 WOS:000338562300001.

11. Apul O, Zhou Y, Karanfil T. Adsorption of organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Abstr Pap Am Chem S. 2014;248. WOS:000349165105487.

12. Lee J, Ye Y, Ward AJ, Zhou CF, Chen V, Minett AI, et al. High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep Purif Technol. 2016;163:109–19. doi: 10.1016/j.seppur.2016.02.032 WOS:000374076700013.

13. Dong XL, Yang LJ. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation. J Biol Eng. 2015;9. ARTN 20 doi: 10.1186/s13036-015-0018-8 WOS:000364017200001. 26500694

14. Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid-Based Compl Alt. 2016. Artn 3012462 doi: 10.1155/2016/3012462 WOS:000391609200001. 28090211

15. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–53. doi: 10.1016/j.ijfoodmicro.2004.03.022 WOS:000222888700001. 15246235

16. Yuan GF, Chen XE, Li D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res Int. 2016;89:117–28. doi: 10.1016/j.foodres.2016.10.004 WOS:000388775500009. 28460897

17. Mohammadi A, Hashemi M, Hosseini SM. Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Tec. 2015;110:203–13. doi: 10.1016/j.postharvbio.2015.08.019 WOS:000362919300026.

18. Mulla M, Ahmed J, Al-Attar H, Castro-Aguirre E, Arfat YA, Auras R. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control. 2017;73:663–71. doi: 10.1016/j.foodcont.2016.09.018 WOS:000390965800071.

19. Harkenthal M, Reichling J, Geiss HK, Saller R. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharmazie. 1999;54(6):460–3. WOS:000080936700015. 10399193

20. Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC complementary and alternative medicine. 2006;6:39. doi: 10.1186/1472-6882-6-39 17134518; PubMed Central PMCID: PMC1693916.

21. Sweetman LJ, Alcock LJ, McArthur JD, Stewart EM, Triani G, in het Panhuis M, et al. Bacterial Filtration Using Carbon Nanotube/Antibiotic Buckypaper Membranes. J Nanomater. 2013. Artn 781212 doi: 10.1155/2013/781212 WOS:000317217900001.

22. Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M. Electrochemical Multiwalled Carbon Nanotube Filter for Viral and Bacterial Removal and Inactivation. Environ Sci Technol. 2011;45(8):3672–9. doi: 10.1021/es2000062 WOS:000289341300068. 21388183

23. Deng SG, Upadhyayula VKK, Smith GB, Mitchell MC. Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. Ieee Sens J. 2008;8(5–6):954–62. doi: 10.1109/Jsen.2008.923929 WOS:000258763200079.

24. Gupta S, Tai NH. Carbon materials as oil sorbents: a review on the synthesis and performance. J Mater Chem A. 2016;4(5):1550–65. doi: 10.1039/c5ta08321d WOS:000368839200001.

25. Wang HT, Lin KY, Jing BX, Krylova G, Sigmon GE, McGinn P, et al. Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res. 2013;47(12):4198–205. doi: 10.1016/j.watres.2013.02.056 WOS:000321084000034. 23582309

26. Fard AK, Mckay G, Manawi Y, Malaibari Z, Hussien MA. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal. Chemosphere. 2016;164:142–55. doi: 10.1016/j.chemosphere.2016.08.099 WOS:000385318200019. 27588573

27. Predoi D, Groza A, Iconaru SL, Predoi G, Barbuceanu F, Guegan R, et al. Properties of Basil and Lavender Essential Oils Adsorbed on the Surface of Hydroxyapatite. Materials. 2018;11(5). Artn 652 doi: 10.3390/Ma11050652 WOS:000434711700002. 29695049

28. Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. Mrs Bull. 2011;36(5):347–55. doi: 10.1557/mrs.2011.65 WOS:000293237700012. 22125358

29. Kunicka-Styczynska A, Sikora M, Kalemba D. Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. J Appl Microbiol. 2009;107(6):1903–11. doi: 10.1111/j.1365-2672.2009.04372.x WOS:000271785400015. 19508298

30. Bakkali F, Averbeck S, Averbeck D, Waomar M. Biological effects of essential oils—A review. Food Chem Toxicol. 2008;46(2):446–75. doi: 10.1016/j.fct.2007.09.106 WOS:000253577400004. 17996351

31. Puskarova A, Buckova M, Krakova L, Pangallo D, Kozics K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep-Uk. 2017;7. Artn 8211 doi: 10.1038/S41598-017-08673-9 WOS:000407570000088. 28811611

32. Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, et al. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biot. 2016;100(20):8865–75. doi: 10.1007/s00253-016-7692-4 WOS:000385128000021. 27388769

33. Lee CJ, Chen LW, Chen LG, Chang TL, Huang CW, Huang MC, et al. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J Food Drug Anal. 2013;21(2):169–76. doi: 10.1016/j.jfda.2013.05.007 WOS:000322612500008.

34. Tighe S, Gao YY, Tseng SCG. Terpinen-4-ol is the Most Active Ingredient of Tea Tree Oil to Kill Demodex Mites. Transl Vis Sci Techn. 2013;2(7). Artn 2 doi: 10.1167/Tvst.2.7.2 WOS:000209813300002. 24349880

35. Kumar A, Mills S, Bazaka K, Bajema N, Atkinson I, Jacob MV. Biodegradable optically transparent terpinen-4-ol thin films for marine antifouling applications. Surf Coat Tech. 2018;349:426–33. doi: 10.1016/j.surfcoat.2018.05.074 WOS:000441492600045.

36. Arweiler NB, Donos N, Netuschil L, Reich E, Sculean A. Clinical and antibacterial effect of tea tree oil—a pilot study. Clinical oral investigations. 2000;4(2):70–3. doi: 10.1007/s007840050118 11218503.

37. Jin L, Hu B, Kuddannaya S, Zhang YL, Li CY, Wang ZL. A three-dimensional carbon nanotube-nanofiber composite foam for selective adsorption of oils and organic liquids. Polym Composite. 2018;39:E271–E7. doi: 10.1002/pc.24334 WOS:000430691500024.

38. Humblot V, Yala JF, Thebault P, Boukerma K, Hequet A, Berjeaud JM, et al. The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers. Biomaterials. 2009;30(21):3503–12. doi: 10.1016/j.biomaterials.2009.03.025 WOS:000267007300001. 19345992

39. Walker T, Canales M, Noimark S, Page K, Parkin I, Faull J, et al. A Light-Activated Antimicrobial Surface Is Active Against Bacterial, Viral and Fungal Organisms. Sci Rep-Uk. 2017;7. Artn 15298 doi: 10.1038/S41598-017-15565-5 WOS:000414917800038. 29127333

40. Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, et al. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci-Mater M. 2013;24(2):437–45. doi: 10.1007/s10856-012-4817-x WOS:000314775100015. 23160913

41. Nogueira JHC, Goncalez E, Galleti SR, Facanali R, Marques MOM, Felicio JD. Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus. Int J Food Microbiol. 2010;137(1):55–60. doi: 10.1016/j.ijfoodmicro.2009.10.017 WOS:000274647500008. 19906457

42. Rasooli I, Owlia P. Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production. Phytochemistry. 2005;66(24):2851–6. doi: 10.1016/j.phytochem.2005.09.029 WOS:000234122700007. 16289146

43. Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Ch. 2002;46(6):1914–20. doi: 10.1128/Aac.46.6.1914–1920.2002 WOS:000175662800043.

44. Xiang F, Bai JH, Tan XB, Chen T, Yang W, He F. Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. var. argyi cv. Qiai. Ind Crop Prod. 2018;125:582–7. doi: 10.1016/j.indcrop.2018.09.048 WOS:000448095400068.

45. Hans M, Mathews S, Mucklich F, Solioz M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases. 2016;11(1). Artn 018902 doi: 10.1116/1.4935853 WOS:000374982200017. 26577181

46. Fisher LE, Yang Y, Yuen MF, Zhang WJ, Nobbs AH, Su B. Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases. 2016;11(1). Artn 011014 doi: 10.1116/1.4944062 WOS:000374982200014. 26992656

47. Chen WS, Jiang JY, Zhang WL, Wang T, Zhou JF, Huang CH, et al. Silver Nanowire-Modified Filter with Controllable Silver Ion Release for Point-of-Use Disinfection. Environ Sci Technol. 2019;53(13):7504–12. doi: 10.1021/acs.est.9b01678 WOS:000474478300033. 31184870

48. Huo ZY, Zhou JF, Wu YT, Wu YH, Liu H, Liu N, et al. A Cu3P nanowire enabling high-efficiency, reliable, and energy-efficient low-voltage electroporation-inactivation of pathogens in water. J Mater Chem A. 2018;6(39):18813–20. doi: 10.1039/c8ta06304d WOS:000448412000007.

49. Miksusanti M, Jenie B, Priosoeryanto BP, Rizal S, Trimulyadi Rekso G. Mode of Action Temu Kunci (Kaempferia pandurata) Essential Oil on E. coli K1.1 Cell Determined by Leakage of Material Cell and Salt Tolerance Assays2008.


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň