Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats

Autoři: Vegard Lysne aff001;  Bodil Bjørndal aff002;  Mari Lausund Grinna aff002;  Øivind Midttun aff003;  Per Magne Ueland aff002;  Rolf Kristian Berge aff002;  Jutta Dierkes aff005;  Ottar Nygård aff001;  Elin Strand aff002
Působiště autorů: Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway aff001;  Department of Clinical Science, University of Bergen, Bergen, Norway aff002;  Bevital A/S, Bergen, Norway aff003;  Department of Heart Disease, Haukeland University Hospital, Bergen, Norway aff004;  Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway aff005;  Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway aff006;  Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway aff007
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0226069



Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes.


For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group.


Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine.


Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.

Klíčová slova:

Blood plasma – Cobalamins – Glycine – Cholines – Metabolic pathways – Metabolites – Oxidation – Serine


1. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990;1(5):228–37. doi: 10.1016/0955-2863(90)90070-2 15539209

2. Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46. doi: 10.1146/annurev.nutr.19.1.217 10448523

3. Svingen GF, Schartum-Hansen H, Pedersen ER, Ueland PM, Tell GS, Mellgren G, et al. Prospective Associations of Systemic and Urinary Choline Metabolites with Incident Type 2 Diabetes. Clin Chem. 2016;62(5):755–65. doi: 10.1373/clinchem.2015.250761 26980210

4. Schartum-Hansen H, Pedersen ER, Svingen GF, Ueland PM, Seifert R, Ebbing M, et al. Plasma choline, smoking, and long-term prognosis in patients with stable angina pectoris. European journal of preventive cardiology. 2014;22(5):606–14. doi: 10.1177/2047487314524867 24595862

5. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis. 2011;34(1):3–15. doi: 10.1007/s10545-010-9088-4 20446114

6. Schartum-Hansen H, Ueland PM, Pedersen ER, Meyer K, Ebbing M, Bleie O, et al. Assessment of urinary betaine as a marker of diabetes mellitus in cardiovascular patients. PLoS One. 2013;8(8):e69454. doi: 10.1371/journal.pone.0069454 23936331

7. Lever M, George PM, Elmslie JL, Atkinson W, Slow S, Molyneux SL, et al. Betaine and secondary events in an acute coronary syndrome cohort. PLoS One. 2012;7(5):e37883. doi: 10.1371/journal.pone.0037883 22649561

8. Svingen GF, Schartum-Hansen H, Ueland PM, Pedersen ER, Seifert R, Ebbing M, et al. Elevated plasma dimethylglycine is a risk marker of mortality in patients with coronary heart disease. European journal of preventive cardiology. 2014;22(6):743–52. doi: 10.1177/2047487314529351 24671904

9. Oyen J, Svingen GF, Gjesdal CG, Tell GS, Ueland PM, Lysne V, et al. Plasma dimethylglycine, nicotine exposure and risk of low bone mineral density and hip fracture: the Hordaland Health Study. Osteoporos Int. 2015;26(5):1573–83. doi: 10.1007/s00198-015-3030-4 25616506

10. Svingen GF, Ueland PM, Pedersen EK, Schartum-Hansen H, Seifert R, Ebbing M, et al. Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol. 2013;33(8):2041–8. doi: 10.1161/ATVBAHA.113.301714 23723367

11. Koutros S, Meyer TE, Fox SD, Issaq HJ, Veenstra TD, Huang WY, et al. Prospective evaluation of serum sarcosine and risk of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Carcinogenesis. 2013;34(10):2281–5. doi: 10.1093/carcin/bgt176 23698636

12. de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygard O, Vollset SE, et al. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer—a large nested case-control study within the JANUS cohort in Norway. Int J Cancer. 2014;134(1):197–206. doi: 10.1002/ijc.28347 23797698

13. Ding Y, Svingen GF, Pedersen ER, Gregory JF, Ueland PM, Tell GS, et al. Plasma Glycine and Risk of Acute Myocardial Infarction in Patients With Suspected Stable Angina Pectoris. J Am Heart Assoc. 2015;5(1):e002621. doi: 10.1161/JAHA.115.002621 26722126

14. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572–83. doi: 10.1038/nrc3557 23822983

15. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39(4):191–8. doi: 10.1016/j.tibs.2014.02.004 24657017

16. Rakhshandehroo M, Knoch B, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010.

17. Contreras AV, Torres N, Tovar AR. PPAR-alpha as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4(4):439–52. doi: 10.3945/an.113.003798 23858092

18. Sheikh K, Camejo G, Lanne B, Halvarsson T, Landergren MR, Oakes ND. Beyond lipids, pharmacological PPARalpha activation has important effects on amino acid metabolism as studied in the rat. American journal of physiology Endocrinology and metabolism. 2007;292(4):E1157–65. doi: 10.1152/ajpendo.00254.2006 17164430

19. Rogue A, Renaud MP, Claude N, Guillouzo A, Spire C. Comparative gene expression profiles induced by PPARgamma and PPARalpha/gamma agonists in rat hepatocytes. Toxicol Appl Pharmacol. 2011;254(1):18–31. doi: 10.1016/j.taap.2011.04.005 21515302

20. Wrzesinski K, I RL, Kulej K, Sprenger RR, Bjorndal B, Christensen BJ, et al. Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets. J Proteomics. 2013;84:61–77. doi: 10.1016/j.jprot.2013.03.027 23568020

21. Chu R, Lim H, Brumfield L, Liu H, Herring C, Ulintz P, et al. Protein profiling of mouse livers with peroxisome proliferator-activated receptor alpha activation. Mol Cell Biol. 2004;24(14):6288–97. doi: 10.1128/MCB.24.14.6288-6297.2004 15226431

22. Ntaios G, Savopoulos C, Chatzopoulos S, Mikhailidis D, Hatzitolios A. Iatrogenic hyperhomocysteinemia in patients with metabolic syndrome: a systematic review and metaanalysis. Atherosclerosis. 2011;214(1):11–9. doi: 10.1016/j.atherosclerosis.2010.08.045 20846651

23. Dierkes J, Westphal S. Effect of drugs on homocysteine concentrations. Semin Vasc Med. 2005;5(2):124–39. doi: 10.1055/s-2005-872398 16047265

24. Lever M, McEntyre CJ, George PM, Slow S, Chambers ST, Foucher C. Fenofibrate causes elevation of betaine excretion but not excretion of other osmolytes by healthy adults. J Clin Lipidol. 2014;8(4):433–40. doi: 10.1016/j.jacl.2014.04.001 25110225

25. Lever M, McEntyre CJ, George PM, Slow S, Elmslie JL, Lunt H, et al. Extreme urinary betaine losses in type 2 diabetes combined with bezafibrate treatment are associated with losses of dimethylglycine and choline but not with increased losses of other osmolytes. Cardiovasc Drugs Ther. 2014;28(5):459–68. doi: 10.1007/s10557-014-6542-9 25060556

26. Lever M, George PM, Slow S, Elmslie JL, Scott RS, Richards AM, et al. Fibrates may cause an abnormal urinary betaine loss which is associated with elevations in plasma homocysteine. Cardiovasc Drugs Ther. 2009;23(5):395–401. doi: 10.1007/s10557-009-6188-1 19653086

27. Lever M, George PM, Atkinson W, Molyneux SL, Elmslie JL, Slow S, et al. Plasma lipids and betaine are related in an acute coronary syndrome cohort. PLoS One. 2011;6(7):e21666. doi: 10.1371/journal.pone.0021666 21747945

28. Lysne V, Strand E, Svingen GF, Bjorndal B, Pedersen ER, Midttun O, et al. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats. Nutrients. 2016;8(1).

29. Ericsson A, Turner N, Hansson GI, Wallenius K, Oakes ND. Pharmacological PPARalpha activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat. PLoS One. 2014;9(12):e113328. doi: 10.1371/journal.pone.0113328 25486018

30. Lu Y, Boekschoten MV, Wopereis S, Muller M, Kersten S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics. 2011;43(23):1307–18. doi: 10.1152/physiolgenomics.00100.2011 21954454

31. Ohta T, Masutomi N, Tsutsui N, Sakairi T, Mitchell M, Milburn MV, et al. Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicol Pathol. 2009;37(4):521–35. doi: 10.1177/0192623309336152 19458390

32. Mayer O Jr., Simon J, Holubec L, Pikner R, Subrt I. Fenofibrate-induced hyperhomocysteinemia may be prevented by folate co-administration. Eur J Clin Pharmacol. 2003;59(5–6):367–71. doi: 10.1007/s00228-003-0616-0 12845504

33. Dierkes J, Westphal S, Luley C. Serum homocysteine increases after therapy with fenofibrate or bezafibrate. Lancet. 1999;354(9174):219–20. doi: 10.1016/S0140-6736(99)02153-4 10421307

34. Zhen Y, Krausz KW, Chen C, Idle JR, Gonzalez FJ. Metabolomic and genetic analysis of biomarkers for peroxisome proliferator-activated receptor alpha expression and activation. Mol Endocrinol. 2007;21(9):2136–51. doi: 10.1210/me.2007-0150 17550978

35. Delaney J, Hodson MP, Thakkar H, Connor SC, Sweatman BC, Kenny SP, et al. Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol. 2005;79(4):208–23. doi: 10.1007/s00204-004-0625-5 15838709

36. Strand E, Lysne V, Grinna ML, Bohov P, Svardal A, #xf8, et al. Short-Term Activation of Peroxisome Proliferator-Activated Receptors and Induces Tissue-Specific Effects on Lipid Metabolism and Fatty Acid Composition in Male Wistar Rats. PPAR Research. 2019;2019:12.

37. Midttun O, Hustad S, Ueland PM. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(9):1371–9. doi: 10.1002/rcm.4013 19337982

38. Midttun O, Kvalheim G, Ueland PM. High-throughput, low-volume, multianalyte quantification of plasma metabolites related to one-carbon metabolism using HPLC-MS/MS. Anal Bioanal Chem. 2013;405(6):2009–17. doi: 10.1007/s00216-012-6602-6 23232958

39. Kelleher BP, Broin SD. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J Clin Pathol. 1991;44(7):592–5. doi: 10.1136/jcp.44.7.592 1856292

40. Midttun O, McCann A, Aarseth O, Krokeide M, Kvalheim G, Meyer K, et al. Combined Measurement of 6 Fat-Soluble Vitamins and 26 Water-Soluble Functional Vitamin Markers and Amino Acids in 50 muL of Serum or Plasma by High-Throughput Mass Spectrometry. Anal Chem. 2016;88(21):10427–36. doi: 10.1021/acs.analchem.6b02325 27715010

41. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9. doi: 10.1037//0033-2909.112.1.155 19565683

42. Team RC. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2018.

43. Bjorndal B, Brattelid T, Strand E, Vigerust NF, Svingen GF, Svardal A, et al. Fish oil and the pan-PPAR agonist tetradecylthioacetic acid affect the amino acid and carnitine metabolism in rats. PLoS One. 2013;8(6):e66926. doi: 10.1371/journal.pone.0066926 23826175

44. Bremer J. Carnitine—metabolism and functions. Physiol Rev. 1983;63(4):1420–80. doi: 10.1152/physrev.1983.63.4.1420 6361812

45. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. J Amino Acids. 2013;45(3):463–77.

46. van Vlies N, Ferdinandusse S, Turkenburg M, Wanders RJ, Vaz FM. PPAR alpha-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation. Biochim Biophys Acta. 2007;1767(9):1134–42. doi: 10.1016/j.bbabio.2007.07.001 17692817

47. Peeters A, Baes M. Role of PPARalpha in Hepatic Carbohydrate Metabolism. PPAR Res. 2010.

48. Kim HI, Ahn YH. Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes. 2004;53 Suppl 1:S60–5.

49. McCormick DB. Riboflavin. In: Erdman JW, Macdonald IA, Zeisel SH, editors. Present Knowledge in Nutrition. 10 ed: Wiley-Blackwell; 2012. doi: 10.1016/j.nut.2011.07.010

50. Loo Y, Shin M, Yamashita Y, Ishigami M, Sasaki M, Sano K, et al. Effect of feeding clofibrate-containing diet on the hepatic NAD+ level in rats. J Nutr Sci Vitaminol (Tokyo). 1995;41(3):341–7. doi: 10.3177/jnsv.41.341 7472678

51. Ringeissen S, Connor SC, Brown HR, Sweatman BC, Hodson MP, Kenny SP, et al. Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers. 2003;8(3–4):240–71. doi: 10.1080/1354750031000149124 12944176

52. Stavrum AK, Heiland I, Schuster S, Puntervoll P, Ziegler M. Model of tryptophan metabolism, readily scalable using tissue-specific gene expression data. J Biol Chem. 2013;288(48):34555–66. doi: 10.1074/jbc.M113.474908 24129579

53. Shin M, Ohnishi M, Iguchi S, Sano K, Umezawa C. Peroxisome-proliferator regulates key enzymes of the tryptophan-NAD+ pathway. Toxicol Appl Pharmacol. 1999;158(1):71–80. doi: 10.1006/taap.1999.8683 10387934

54. Shin M, Kim I, Inoue Y, Kimura S, Gonzalez FJ. Regulation of mouse hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme in the tryptophan-nicotinamide adenine dinucleotide pathway, by hepatocyte nuclear factor 4alpha and peroxisome proliferator-activated receptor alpha. Mol Pharmacol. 2006;70(4):1281–90. doi: 10.1124/mol.106.026294 16807375

55. Ueland PM, McCann A, Midttun O, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med. 2017;53:10–27. doi: 10.1016/j.mam.2016.08.001 27593095

56. Ueland PM, Ulvik A, Rios-Avila L, Midttun O, Gregory JF. Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr. 2015;35:33–70. doi: 10.1146/annurev-nutr-071714-034330 25974692

57. Syversen U, Stunes AK, Gustafsson BI, Obrant KJ, Nordsletten L, Berge R, et al. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone. BMC Endocr Disord. 2009;9(10).

58. di Salvo ML, Contestabile R, Safo MK. Vitamin B(6) salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta. 2011;1814(11):1597–608. doi: 10.1016/j.bbapap.2010.12.006 21182989

59. Hannibal L, Lysne V, Bjorke-Monsen AL, Behringer S, Grunert SC, Spiekerkoetter U, et al. Biomarkers and Algorithms for the Diagnosis of Vitamin B12 Deficiency. Front Mol Biosci. 2016;3:27. doi: 10.3389/fmolb.2016.00027 27446930

60. Molloy AM, Pangilinan F, Mills JL, Shane B, O'Neill MB, McGaughey DM, et al. A Common Polymorphism in HIBCH Influences Methylmalonic Acid Concentrations in Blood Independently of Cobalamin. Am J Hum Genet. 2016;98(5):869–82. doi: 10.1016/j.ajhg.2016.03.005 27132595

61. Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal. 2010;8:e002. doi: 10.1621/nrs.08002 20414453

62. Kobayashi R, Murakami T, Obayashi M, Nakai N, Jaskiewicz J, Fujiwara Y, et al. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms. Arch Biochem Biophys. 2002;407(2):231–40. doi: 10.1016/s0003-9861(02)00472-1 12413496

63. Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88. doi: 10.1515/cclm-2012-0568 23241609

64. Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry. 2000;39(42):13005–11. doi: 10.1021/bi001088w 11041866

65. Fang L, Zhang M, Li Y, Liu Y, Cui Q, Wang N. PPARgene: A Database of Experimentally Verified and Computationally Predicted PPAR Target Genes. PPAR Res. 2016;2016:6042162. doi: 10.1155/2016/6042162 27148361

66. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. doi: 10.1371/journal.pbio.1000412 20613859

Článok vyšiel v časopise


2019 Číslo 12