Translocation of Mycobacterium tuberculosis after experimental ingestion


Autoři: Mustapha Fellag aff001;  Ahmed Loukil aff002;  Jamal Saad aff001;  Hubert Lepidi aff002;  Fériel Bouzid aff002;  Fabienne Brégeon aff002;  Michel Drancourt aff002
Působiště autorů: IHU Méditerranée Infection, Marseille, France aff001;  Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227005

Souhrn

Human tuberculosis is a life-threatening infection following the inhalation of Mycobacterium tuberculosis, while the closely related bacteria Mycobacterium bovis and Mycobacterium canettii are thought to be transmitted by ingestion. To explore whether M. tuberculosis could also infect individuals by ingestion, male BALBc mice were fed 2 x 106 CFUs of M. tuberculosis Beijing or phosphate-buffered saline as a negative control, over a 28-day experiment. While eight negative control mice remained disease-free, M. tuberculosis was identified in the lymph nodes and lungs of 8/14 mice and in the spleens of 4/14 mice by microscopy, PCR-based detection and culture. Whole-genome sequencing confirmed the identity of the inoculum and the tissue isolates. In these genetically identical mice, the dissemination of M. tuberculosis correlated with the results of the culture detection of four intestinal bacteria. These observations indicate that ingested M. tuberculosis mycobacteria can translocate, notably provoking lymphatic tuberculosis.

Klíčová slova:

DNA extraction – Fluorescent in situ hybridization – Gastrointestinal tract – Lymph nodes – Mouse models – Spleen


Zdroje

1. Fox GJ, Orlova M, Schurr E. Tuberculosis in Newborns: The Lessons of the “Lübeck Disaster” (1929–1933). PLOS Pathogens. 2016;12: e1005271. doi: 10.1371/journal.ppat.1005271 26794678

2. Escombe AR, Oeser C, Gilman RH, Navincopa M, Ticona E, Martínez C, et al. The Detection of Airborne Transmission of Tuberculosis from HIV-Infected Patients, Using an In Vivo Air Sampling Model. Clin Infect Dis. 2007;44: 1349–1357. doi: 10.1086/515397 17443474

3. Turner RD, Bothamley GH. Cough and the Transmission of Tuberculosis. J Infect Dis. 2015;211: 1367–1372. doi: 10.1093/infdis/jiu625 25387581

4. Aboubaker Osman D, Bouzid F, Canaan S, Drancourt M. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens. Front Public Health. 2016;3. doi: 10.3389/fpubh.2015.00283 26793699

5. Evans JT, Smith EG, Banerjee A, Smith RM, Dale J, Innes JA, et al. Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK. The Lancet. 2007;369: 1270–1276. doi: 10.1016/S0140-6736(07)60598-4

6. Smith RMM, Drobniewski F, Gibson A, Montague JDE, Logan MN, Hunt D, et al. Mycobacterium bovis Infection, United Kingdom. Emerg Infect Dis. 2004;10: 539–541. doi: 10.3201/eid1003.020819 15109433

7. Grange JM. Mycobacterium bovis infection in human beings. Tuberculosis. 2001;81: 71–77. doi: 10.1054/tube.2000.0263 11463226

8. Calmette, M.A. The intestinal origin of pulmonary tuberculosis, and the mechanism of tuberculous infection. Reviews. Agriculture and Fisheries Annual Reports of Proceedings under the Diseases of Animal Actes, for the year 1905. 1905.

9. Pierce C, Dubos RJ, Middlebrook G. Infection of Mice with Mammalian Tubercle Bacilli Grown in Tween-Albumin Liquid Medium. Journal of Experimental Medicine. 1947;86: 159–174. doi: 10.1084/jem.86.2.159 19871664

10. Lefford M.J. Diseases in mice and rats. In Kubica GP and Wayne LG (ed), The mycobacteria, New York. Pp. 947–977. 1984.

11. Bouzid F, Brégeon F, Lepidi H, Donoghue HD, Minnikin DE, Drancourt M. Ready Experimental Translocation of Mycobacterium canettii Yields Pulmonary Tuberculosis. Infect Immun. 2017;85. doi: 10.1128/IAI.00507-17 28923895

12. Loukil A, Kirtania P, Bedotto M, Drancourt M. FISHing Mycobacterium tuberculosis Complex by Use of a rpoB DNA Probe Bait. Journal of Clinical Microbiology. 2018;56: e00568–18. doi: 10.1128/JCM.00568-18 30068538

13. Bruijnesteijn Van Coppenraet ES, Lindeboom JA, Prins JM, Peeters MF, Claas ECJ, Kuijper EJ. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J Clin Microbiol. 2004;42: 2644–2650. doi: 10.1128/JCM.42.6.2644-2650.2004 15184446

14. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE. 2010;5: e12191. doi: 10.1371/journal.pone.0012191 20808947

15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology. 2012;19: 455–477. doi: 10.1089/cmb.2012.0021 22506599

16. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30: 2068–2069. doi: 10.1093/bioinformatics/btu153 24642063

17. Steiner A, Stucki D, Coscolla M, Borrell S, Gagneux S. KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics. 2014;15: 881. doi: 10.1186/1471-2164-15-881 25297886

18. Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7: 51. doi: 10.1186/s13073-015-0164-0 26019726

19. Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nature Communications. 2014;5: 4812. doi: 10.1038/ncomms5812 25176035

20. Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, Roholl P, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137: 460–468. doi: 10.1111/j.1365-2249.2004.02551.x 15320894

21. Jeon B-Y, Kwak J, Hahn M-Y, Eum S-Y, Yang J, Kim S-C, et al. In vivo characteristics of Korean Beijing Mycobacterium tuberculosis strain K1 in an aerosol challenge model and in the Cornell latent tuberculosis model. Journal of Medical Microbiology. 2012;61: 1373–1379. doi: 10.1099/jmm.0.047027-0 22820694

22. Dibbern J, Eggers L, Schneider BE. Sex differences in the C57BL/6 model of Mycobacterium tuberculosis infection. Sci Rep. 2017;7: 10957. doi: 10.1038/s41598-017-11438-z 28887521

23. Medina E, North RJ. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology. 1998;93: 270–274. doi: 10.1046/j.1365-2567.1998.00419.x 9616378

24. Dunn PL, North RJ. Virulence ranking of some Mycobacterium tuberculosis and Mycobacterium bovis strains according to their ability to multiply in the lungs, induce lung pathology, and cause mortality in mice. Infect Immun. 1995;63: 3428–3437. 7642273

25. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun. 2002;70: 4501–4509. doi: 10.1128/IAI.70.8.4501-4509.2002 12117962

26. Smaoui S, Mezghanni MA, Hammami B, Zalila N, Marouane C, Kammoun S, et al. Tuberculosis lymphadenitis in a southeastern region in Tunisia: Epidemiology, clinical features, diagnosis and treatment. International Journal of Mycobacteriology. 2015;4: 196–201. doi: 10.1016/j.ijmyco.2015.04.004 27649866

27. Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018; 540–550. doi: 10.1038/s41579-018-0041-0 29937540

28. Winglee K, Eloe-Fadrosh E, Gupta S, Guo H, Fraser C, Bishai W. Aerosol Mycobacterium tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLOS ONE. 2014;9: e97048. doi: 10.1371/journal.pone.0097048 24819223

29. Luo M, Liu Y, Wu P, Luo D-X, Sun Q, Zheng H, et al. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Front Physiol. 2017;8: 822. doi: 10.3389/fphys.2017.00822 29204120

30. El Khéchine A, Henry M, Raoult D, Drancourt M. Detection of Mycobacterium tuberculosis complex organisms in the stools of patients with pulmonary tuberculosis. Microbiology (Reading, Engl). 2009;155: 2384–2389. doi: 10.1099/mic.0.026484–0

31. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, Scola BL, Raoult D. The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clinical Microbiology Reviews. 2015;28: 237–264. doi: 10.1128/CMR.00014-14 25567229

32. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45: 1176–1182. doi: 10.1038/ng.2744 23995134

33. Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W, Gumi B, et al. Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa. Curr Biol. 2015;25: 3260–3266. doi: 10.1016/j.cub.2015.10.061 26687624

34. Stewart JR, Stringer CB. Human evolution out of Africa: the role of refugia and climate change. Science. 2012;335: 1317–1321. doi: 10.1126/science.1215627 22422974

35. Ghodbane R, Mba Medie F, Lepidi H, Nappez C, Drancourt M. Long-term survival of tuberculosis complex mycobacteria in soil. Microbiology. 2014;160: 496–501. doi: 10.1099/mic.0.073379-0 24425768


Článok vyšiel v časopise

PLOS One


2019 Číslo 12