Modeling succinate dehydrogenase loss disorders in C. elegans through effects on hypoxia-inducible factor
Autoři:
Megan M. Braun aff001; Tamara Damjanac aff001; Yuxia Zhang aff001; Chuan Chen aff001; Jinghua Hu aff001; L. James Maher, III aff001
Působiště autorů:
Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227033
Souhrn
Mitochondrial disorders arise from defects in nuclear genes encoding enzymes of oxidative metabolism. Mutations of metabolic enzymes in somatic tissues can cause cancers due to oncometabolite accumulation. Paraganglioma and pheochromocytoma are examples, whose etiology and therapy are complicated by the absence of representative cell lines or animal models. These tumors can be driven by loss of the tricarboxylic acid cycle enzyme succinate dehydrogenase. We exploit the relationship between succinate accumulation, hypoxic signaling, egg-laying behavior, and morphology in C. elegans to create genetic and pharmacological models of succinate dehydrogenase loss disorders. With optimization, these models may enable future high-throughput screening efforts.
Klíčová slova:
Enzymes – Sequence assembly tools – Phenotypes – Caenorhabditis elegans – RNA interference – Drug metabolism – Library screening – Enzyme metabolism
Zdroje
1. Hoekstra AS, Bayley J-P. The role of complex II in disease. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2013;1827(5):543–51. https://doi.org/10.1016/j.bbabio.2012.11.005.
2. Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A. 2010;107(24):10996–1001. papers3://publication/. doi: 10.1073/pnas.1006214107 20534480
3. Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A, Rotig A. Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta. 1997;1361(2):185–97. doi: 10.1016/s0925-4439(97)00035-5 9300800.
4. Rustin P, Munnich A, Rötig A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur J Hum Genet. 2002;10(5):289–91. papers3://publication/. doi: 10.1038/sj.ejhg.5200793 12082502
5. Thompson CB. Metabolic Enzymes as Oncogenes or Tumor Suppressors. New England J Med. 2009;360(8):813–5.
6. Baysal BE. Hereditary paraganglioma targets diverse paraganglia. J Med Genet. 2002;39(9):617–22. doi: 10.1136/jmg.39.9.617 12205103.
7. Her YF, Maher LJ 3rd. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int J Endocrinol. 2015;2015:296167. doi: 10.1155/2015/296167 26294907; PubMed Central PMCID: PMC4532907.
8. Berends AMA, Buitenwerf E, de Krijger RR, Veeger NJGM, van der Horst-Schrivers ANA, Links TP, et al. Incidence of pheochromocytoma and sympathetic paraganglioma in the Netherlands: A nationwide study and systematic review. European Journal of Internal Medicine. 2018;51:68–73. doi: 10.1016/j.ejim.2018.01.015 29361475
9. Favier J, Amar L, Gimenez-Roqueplo A-P. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nature Publishing Group. 2014;11(2):101–11. doi: 10.1038/nrendo.2014.188 papers2://publication
10. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, et al. SDHA is a tumor suppressor gene causing paraganglioma. Human Mol Gen. 2010;19(15):3011–20.
11. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69(1):49–54. doi: 10.1086/321282 11404820.
12. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848–51. doi: 10.1126/science.287.5454.848 10657297.
13. Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26(3):268–70. doi: 10.1038/81551 11062460.
14. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85. doi: 10.1016/j.ccr.2004.11.022 15652751.
15. Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial Complex II: At the Crossroads. Trends in Biochemical Sciences. 2017;42(4):312–25. doi: 10.1016/j.tibs.2017.01.003 28185716
16. Bezawork-Geleta A, Wen H, Dong L, Yan B, Vider J, Boukalova S, et al. Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nature Communications. 2018;9(1):2221. doi: 10.1038/s41467-018-04603-z 29880867
17. Lussey-Lepoutre C, Hollinshead KER, Ludwig C, Menara M, Morin A, Castro-Vega LJ, et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun. 2015;6:8784–. papers2://publication/. doi: 10.1038/ncomms9784 26522426
18. Kaelin WG Jr., McKnight SL. Influence of metabolism on epigenetics and disease. Cell. 2013;153(1):56–69. Epub 2013/04/02. doi: 10.1016/j.cell.2013.03.004 23540690; PubMed Central PMCID: PMC3775362.
19. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, et al. Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chemical reviews. 2000;100(1):235–350. doi: 10.1021/cr9900275 11749238
20. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326–38. doi: 10.1101/gad.191056.112 22677546; PubMed Central PMCID: PMC3387660.
21. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O<sub>2</sub> Sensing. Science. 2001;292(5516):464. doi: 10.1126/science.1059817 11292862
22. Corsi AK. A biochemist's guide to Caenorhabditis elegans. Analytical biochemistry. 2006;359(1):1–17. Epub 2006/08/11. doi: 10.1016/j.ab.2006.07.033 16942745.
23. Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery. 2006;5(5):387–99. doi: 10.1038/nrd2031 16672925
24. Jiang H, Guo R, Powell-Coffman JA. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA. 2001;98(14):7916–21. doi: 10.1073/pnas.141234698 11427734
25. Trent C, Tsuing N, Horvitz HR. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983;104(4):619–47. 11813735.
26. Bishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O'Rourke D, et al. Genetic analysis of pathways regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans. PLoS biology. 2004;2(10):e289. doi: 10.1371/journal.pbio.0020289 15361934
27. Au—Gardner M, Au—Rosell M, Au—Myers EM. Measuring the Effects of Bacteria on C. Elegans Behavior Using an Egg Retention Assay. JoVE. 2013;(80):e51203. doi: 10.3791/51203 24192811
28. Kramer A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem. 1996;65:367–409. Epub 1996/01/01. doi: 10.1146/annurev.bi.65.070196.002055 8811184.
29. Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991;10(12):3959–70. Epub 1991/12/01. 1935914; PubMed Central PMCID: PMC453137.
30. Moore BT, Jordan JM, Baugh LR. WormSizer: high-throughput analysis of nematode size and shape. PLoS One. 2013;8(2):e57142. Epub 2013/03/02. doi: 10.1371/journal.pone.0057142 23451165; PubMed Central PMCID: PMC3579787.
31. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. Epub 2012/06/30. doi: 10.1038/nmeth.2019 22743772; PubMed Central PMCID: PMC3855844.
32. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421(6920):231–7. doi: 10.1038/nature01278 12529635
33. Woods S, Coghlan A, Rivers D, Warnecke T, Jeffries SJ, Kwon T, et al. Duplication and Retention Biases of Essential and Non-Essential Genes Revealed by Systematic Knockdown Analyses. PLOS Genetics. 2013;9(5):e1003330. doi: 10.1371/journal.pgen.1003330 23675306
34. Chang AJ, Bargmann CI. Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2008;105(20):7321–6. doi: 10.1073/pnas.0802164105 18477695
35. Fets L, Driscoll P, Grimm F, Jain A, M. Nunes P, Gounis M, et al. MCT2 mediates concentration-dependent inhibition of glutamine metabolism by MOG2018. doi: 10.1038/s41589-018-0136-y 30297875
36. Platero-Luengo A, González-Granero S, Durán R, Díaz-Castro B, Piruat José I, García-Verdugo José M, et al. An O2-Sensitive Glomus Cell-Stem Cell Synapse Induces Carotid Body Growth in Chronic Hypoxia. Cell. 2014;156(1):291–303. doi: 10.1016/j.cell.2013.12.013
37. Ellerbrock BR. Screening for Presenilin Inhibitors Using the Free-Living Nematode, Caenorhabditis elegans. Journal of biomolecular screening. 2004;9(2):147–52. doi: 10.1177/1087057103261038://publication/doi/10.1177/1087057103261038 15006138
38. Her YF, Maher LJ. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int J Endocrin. 2015;2015(11):1–14. papers2://publication doi: 10.1016/j.ccr.2005.06.017
39. Her YF, Nelson-Holte M, Maher LJ 3rd. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS One. 2015;10(5):e0127471. doi: 10.1371/journal.pone.0127471 25985299; PubMed Central PMCID: PMC4436181.
40. Lepoutre-Lussey C, Thibault C, Buffet A, Morin A, Badoual C, Benit P, et al. From Nf1 to Sdhb knockout: Successes and failures in the quest for animal models of pheochromocytoma. 2015:1–9. papers3://publication doi: 10.1016/j.mce.2015.06.027
41. Bancos I, Bida JP, Tian D, Bundrick M, John K, Holte MN, et al. High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. PLoS One. 2013;8(2):e56827. doi: 10.1371/journal.pone.0056827 23451094; PubMed Central PMCID: PMC3579935.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- 100 let s metamizolem: jaké je jeho současné postavení v léčbě bolesti
- Masturbační chování žen v ČR − dotazníková studie