Lower IQ and poorer cognitive profiles in treated perinatally HIV-infected children is irrespective of having a background of international adoption


Autoři: M. Van den Hof aff001;  A. M. ter Haar aff001;  H. J. Scherpbier aff001;  P. Reiss aff002;  F. W. N. M. Wit aff002;  K. J. Oostrom aff005;  D. Pajkrt aff001
Působiště autorů: Emma Children’s Hospital, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Pediatric Infectious Diseases, Amsterdam, the Netherlands aff001;  Department of Global Health, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands aff002;  HIV Monitoring Foundation, Amsterdam, the Netherlands aff003;  Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, and Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands aff004;  Emma Children’s Hospital, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Psychosocial Department, Amsterdam, the Netherlands aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0224930

Souhrn

Background

HIV-associated cognitive deficiency in perinatally HIV-infected (PHIV) children has been studied in Western countries in a population of which an increasing proportion has been internationally adopted. Studies often lack an appropriate internationally adopted HIV-uninfected control group, potentially confounding the relationship between HIV and cognitive functioning. This study aims to further elucidate the association between treated HIV infection and cognitive development by addressing the background of international adoption.

Methods

We cross-sectionally studied the impact of HIV on cognition by comparing PHIV children and HIV- uninfected controls, matched for age-, sex-, ethnicity-, socioeconomic status (SES)- and adoption status. We used a standardized neuropsychological test battery to measure intelligence (IQ), and the cognitive domains of processing speed, working memory, executive function, learning ability and visual-motor function and compared outcomes using lineair regression models, adjusted for IQ. We determined cognitive profiles and cognitive impairment by using multivariate normative comparison (MNC) and explored associations with HIV disease- and treatment-related factors.

Results

We enrolled fourteen PHIV children (mean age 10.45 years [1.73 SD], 93% adopted from sub-Saharan Africa at a median age of 3.3 years [IQR 2.1–4.2]) and fifteen HIV- uninfected controls. Groups did not clinically nor statistically differ in age, sex, ethnicity, SES, region of birth, adoption status and age at adoption. PHIV scored consistently lower on all cognitive domains and MNC outcomes. Compared to controls, PHIV children had a significant lower IQ (mean 81 [SD 11] versus mean 97 [SD 15], p = 0.005), and a poorer cognitive profile by MNC (Hotelling’s T2 mean -4.36 [SD 5.6] versus mean 0.16 [SD 4.5], p = 0.021), not associated with HIV disease- and treatment-related factors. Two PHIV (14%) and one control (7%) were classified as cognitively impaired (p = 0.598).

Conclusions

Findings indicate treated HIV-infection to be independently associated with lower IQ and poorer cognitive profiles in PHIV children, irrespective of a background of international adoption.

Klíčová slova:

Cognition – Cognitive impairment – HIV diagnosis and management – Children – Learning – Vision – Working memory


Zdroje

1. Phillips N, Amos T, Kuo C, Hoare J, Ipser J, Thomas KG, et al. HIV-Associated Cognitive Impairment in Perinatally Infected Children: A Meta-analysis. Pediatrics. 2016;138(5). Epub 2016/12/13. doi: 10.1542/peds.2016-0893 27940772; PubMed Central PMCID: PMC5079077.

2. McHenry MS, McAteer CI, Oyungu E, McDonald BC, Bosma CB, Mpofu PB, et al. Neurodevelopment in Young Children Born to HIV-Infected Mothers: A Meta-analysis. Pediatrics. 2018;141(2). Epub 2018/01/28. doi: 10.1542/peds.2017-2888 29374109; PubMed Central PMCID: PMC5810606 conflicts of interest to disclose.

3. Cohen S, Ter Stege JA, Geurtsen GJ, Scherpbier HJ, Kuijpers TW, Reiss P, et al. Poorer cognitive performance in perinatally HIV-infected children versus healthy socioeconomically matched controls. Clin Infect Dis. 2015;60(7):1111–9. doi: 10.1093/cid/ciu1144 25516183.

4. Ruel TD, Boivin MJ, Boal HE, Bangirana P, Charlebois E, Havlir DV, et al. Neurocognitive and motor deficits in HIV-infected Ugandan children with high CD4 cell counts. Clin Infect Dis. 2012;54(7):1001–9. Epub 2012/02/07. doi: 10.1093/cid/cir1037 22308272; PubMed Central PMCID: PMC3297647.

5. Nachman S, Chernoff M, Williams P, Hodge J, Heston J, Gadow KD. Human immunodeficiency virus disease severity, psychiatric symptoms, and functional outcomes in perinatally infected youth. Arch Pediatr Adolesc Med. 2012;166(6):528–35. Epub 2012/02/09. doi: 10.1001/archpediatrics.2011.1785 22312169; PubMed Central PMCID: PMC3407294.

6. Smith R, Chernoff M, Williams PL, Malee KM, Sirois PA, Kammerer B, et al. Impact of HIV severity on cognitive and adaptive functioning during childhood and adolescence. Pediatr Infect Dis J. 2012;31(6):592–8. Epub 2012/05/18. doi: 10.1097/INF.0b013e318253844b 22592486; PubMed Central PMCID: PMC3424347.

7. van Sighem A.I. BTS, Wit F.W.N.M., Smit C., Matser A., Reiss P. Monitoring Report 2018. Human Immunodeficiency Virus (HIV) Infection in the Netherlands. Amsterdam: Stichting HIV Monitoring2018.

8. Judd A, Le Prevost M, Melvin D, Arenas-Pinto A, Parrott F, Winston A, et al. Cognitive Function in Young Persons With and Without Perinatal HIV in the AALPHI Cohort in England: Role of Non-HIV-Related Factors. Clin Infect Dis. 2016;63(10):1380–7. Epub 2016/10/30. doi: 10.1093/cid/ciw568 27581764; PubMed Central PMCID: PMC5091348.

9. Dobrova-Krol NA, van IMH, Bakermans-Kranenburg MJ, Juffer F. Effects of perinatal HIV infection and early institutional rearing on physical and cognitive development of children in Ukraine. Child development. 2010;81(1):237–51. Epub 2010/03/25. doi: 10.1111/j.1467-8624.2009.01392.x 20331665.

10. Gunnar MR, Bruce J, Grotevant HD. International adoption of institutionally reared children: research and policy. Dev Psychopathol. 2000;12(4):677–93. Epub 2001/02/24. doi: 10.1017/s0954579400004077 11202039.

11. Van den Hof M, Ter Haar AM, Scherpbier HJ, van der Lee JH, Reiss P, Wit F, et al. Neurocognitive development in perinatally HIV-infected adolescents on long-term treatment compared to healthy matched controls: a longitudinal study. Clin Infect Dis. 2019. Epub 2019/05/21. doi: 10.1093/cid/ciz386 31106812.

12. Cohen S, Caan MW, Mutsaerts HJ, Scherpbier HJ, Kuijpers TW, Reiss P, et al. Cerebral injury in perinatally HIV-infected children compared to matched healthy controls. Neurology. 2016;86(1):19–27. doi: 10.1212/WNL.0000000000002209 26561287.

13. Cohen S, ter Stege JA, Weijsenfeld AM, van der Plas A, Kuijpers TW, Reiss P, et al. Health-related quality of life in perinatally HIV-infected children in the Netherlands. AIDS Care. 2015;27(10):1279–88. doi: 10.1080/09540121.2015.1050986 26272357.

14. Demirkaya N, Cohen S, Wit FW, Abramoff MD, Schlingemann RO, Kuijpers TW, et al. Retinal Structure and Function in Perinatally HIV-Infected and cART-Treated Children: A Matched Case-Control Study. Invest Ophthalmol Vis Sci. 2015;56(6):3945–54. doi: 10.1167/iovs.15-16855 26087360.

15. Blokhuis C, Demirkaya N, Cohen S, Wit FW, Scherpbier HJ, Reiss P, et al. The Eye as a Window to the Brain: Neuroretinal Thickness Is Associated With Microstructural White Matter Injury in HIV-Infected Children. Invest Ophthalmol Vis Sci. 2016;57(8):3864–71. Epub 2016/07/23. doi: 10.1167/iovs.16-19716 27447087.

16. Blokhuis C, Mutsaerts HJ, Cohen S, Scherpbier HJ, Caan MW, Majoie CB, et al. Higher subcortical and white matter cerebral blood flow in perinatally HIV-infected children. Medicine (Baltimore). 2017;96(7):e5891. Epub 2017/02/17. doi: 10.1097/MD.0000000000005891 28207506; PubMed Central PMCID: PMC5319495.

17. Van Dalen YW, Blokhuis C, Cohen S, Ter Stege JA, Teunissen CE, Kuhle J, et al. Neurometabolite Alterations Associated With Cognitive Performance in Perinatally HIV-Infected Children. Medicine (Baltimore). 2016;95(12):e3093. doi: 10.1097/MD.0000000000003093 27015179.

18. Van den Hof M, Blokhuis C, Cohen S, Scherpbier HJ, Wit FWNM, Pistorius MCM, et al. CNS penetration of ART in HIV-infected children. Journal of Antimicrobial Chemotherapy. 2017:dkx396–dkx. doi: 10.1093/jac/dkx396 29126299

19. UNESCO. International Standard Classification of Education ISCED 2011. Montreal: UNESCO Institute for Statistics. 2012.

20. Wechsler D. Wechsler Intelligence Scale manual, 3rd Edition. Amsterdam, Pearson Assessment. 2002.

21. Wechsler D. Wechsler Adult Intelligence Scale manual, 3rd Edition. Amsterdam: Pearson Assessment. 2000

22. Reitan R. Trail-making test. Arizona, Reitan Neuropsychology Laboratory. 1979.

23. Saan RJD B.G. De 15-woordentests A en B. Een voorlopige handleiding (intern rapport) Groningen, AZG, afd Neuropsychologie. 1986

24. Beery K. E., B. N. A., A. BN. The Beery–Buktenica Developmental Test of Visual–Motor Integration: Administration, scoring, and teaching manual (5th ed.). Amsterdam: Pearson Assessment. 2004.

25. Phillips NJ, Hoare J, Stein DJ, Myer L, Zar HJ, Thomas KGF. HIV-associated cognitive disorders in perinatally infected children and adolescents: a novel composite cognitive domains score. AIDS Care. 2018;30(sup1):8–16. Epub 2018/04/24. doi: 10.1080/09540121.2018.1466982 29681168.

26. Huizenga HM, Smeding H, Grasman RP, Schmand B. Multivariate normative comparisons. Neuropsychologia. 2007;45(11):2534–42. Epub 2007/04/25. doi: 10.1016/j.neuropsychologia.2007.03.011 17451757.

27. Su T, Schouten J, Geurtsen GJ, Wit FW, Stolte IG, Prins M, et al. Multivariate normative comparison, a novel method for more reliably detecting cognitive impairment in HIV infection. AIDS. 2015;29(5):547–57. doi: 10.1097/QAD.0000000000000573 25587908.

28. Schouten J, Su T, Wit FW, Kootstra NA, Caan MW, Geurtsen GJ, et al. Determinants of reduced cognitive performance in HIV-1-infected middle-aged men on combination antiretroviral therapy. AIDS. 2016;30(7):1027–38. Epub 2016/01/12. doi: 10.1097/QAD.0000000000001017 26752277.

29. Team RC. R: A Language and Environment for Statistical Computing. 2018.

30. Weber V, Radeloff D, Reimers B, Salzmann-Manrique E, Bader P, Schwabe D, et al. Neurocognitive development in HIV-positive children is correlated with plasma viral loads in early childhood. Medicine (Baltimore). 2017;96(23):e6867. Epub 2017/06/08. doi: 10.1097/MD.0000000000006867 28591025; PubMed Central PMCID: PMC5466203.

31. Flynn JR. Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin. 1987;101(2):171–91.

32. Department of Justice and Security tN. Adoptie, trends en analyse: Statistisch overzicht interlandelijke adoptie over de jaren 2013 tot en met 2017. In: Security DoJa, editor. 2018.

33. Xiao PL, Zhou YB, Chen Y, Yang MX, Song XX, Shi Y, et al. Association between maternal HIV infection and low birth weight and prematurity: a meta-analysis of cohort studies. BMC Pregnancy Childbirth. 2015;15:246. Epub 2015/10/10. doi: 10.1186/s12884-015-0684-z 26450602; PubMed Central PMCID: PMC4599647.

34. Plomin R. Nature, Nurture, and Cognitive Development from 1 to 16 Years: A Parent-Offspring Adoption Study. Psychological Science. 1997;8(6):442–7.

35. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nature reviews Neuroscience. 2013;14(5):365–76. Epub 2013/04/11. doi: 10.1038/nrn3475 23571845.


Článok vyšiel v časopise

PLOS One


2019 Číslo 12