Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides

Autoři: Raphaël Morard aff001;  Angelina Füllberg aff001;  Geert-Jan A. Brummer aff002;  Mattia Greco aff001;  Lukas Jonkers aff001;  André Wizemann aff004;  Agnes K. M. Weiner aff001;  Kate Darling aff006;  Michael Siccha aff001;  Ronan Ledevin aff008;  Hiroshi Kitazato aff009;  Thibault de Garidel-Thoron aff010;  Colomban de Vargas aff011;  Michal Kucera aff001
Působiště autorů: MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany aff001;  NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems, and Utrecht University, Den Burg, and Utrecht University, The Netherlands aff002;  Vrije Universiteit Amsterdam, Department of Earth Sciences, Faculty of Science, Amsterdam, The Netherlands aff003;  Leibniz Centre for Tropical Marine Research, Bremen, Germany aff004;  Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America aff005;  School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom aff006;  School of Geography and Sustainable Development, University of St Andrews, St Andrews, Scotland, United Kingdom aff007;  UMR5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Pessac, France aff008;  Japan Agency for Marine Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan aff009;  Aix-Marseille Université, CNRS, IRD, Collège de France, INRA, CEREGE, Aix-en-Provence, France aff010;  Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, Roscoff, France aff011;  Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France aff012
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225246


The planktonic foraminifera genus Globigerinoides provides a prime example of a species-rich genus in which genetic and morphological divergence are uncorrelated. To shed light on the evolutionary processes that lead to the present-day diversity of Globigerinoides, we investigated the genetic, ecological and morphological divergence of its constituent species. We assembled a global collection of single-cell barcode sequences and show that the genus consists of eight distinct genetic types organized in five extant morphospecies. Based on morphological evidence, we reassign the species Globoturborotalita tenella to Globigerinoides and amend Globigerinoides ruber by formally proposing two new subspecies, G. ruber albus n.subsp. and G. ruber ruber in order to express their subspecies level distinction and to replace the informal G. ruber “white” and G. ruber “pink”, respectively. The genetic types within G. ruber and Globigerinoides elongatus show a combination of endemism and coexistence, with little evidence for ecological differentiation. CT-scanning and ontogeny analysis reveal that the diagnostic differences in adult morphologies could be explained by alterations of the ontogenetic trajectories towards final (reproductive) size. This indicates that heterochrony may have caused the observed decoupling between genetic and morphological diversification within the genus. We find little evidence for environmental forcing of either the genetic or the morphological diversification, which allude to biotic interactions such as symbiosis, as the driver of speciation in Globigerinoides.

Klíčová slova:

Cryptic speciation – Morphogenesis – Paleogenetics – Phylogenetic analysis – Phylogenetics – Phylogeography – Plankton – Taxonomy


1. Cushman JA. An outline of a re-classification of the foraminifera. Contrib from Cushman Found Foraminifer Res. 1927;3: 1–105.

2. Banner FT, Blow FW. Some primary types of species belonging to the superfamily Globigerinaceae. Contrib from Cushman Found Foraminifer Res. 1960;11: 1–41.

3. Parker FL. Planktonic Foraminiferal Species in Pacific Sediments. Micropaleontology. 1962;8: 219. doi: 10.2307/1484745

4. Kennett JP, Srinivasan MS. Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Hutchinson. Troudsburg; 1983.

5. Deuser WG, Ross EH. Seasonally abundant planktonic foraminifera of the Sargasso Sea; succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J Foraminifer Res. 1989;19: 268–293. doi: 10.2113/gsjfr.19.4.268

6. Thompson PR, Bé H, Duplessy J-C, Shackleton NJ. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature. 1979;280: 554–558.

7. Robbins LL, Healy-Williams N. Toward a classification of planktonic foraminifera based on biochemical, geochemical, and morphological criteria. J Foraminifer Res. 2009;21: 159–167. doi: 10.2113/gsjfr.21.2.159

8. Wang L. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle. Palaeogeogr Palaeoclimatol Palaeoecol. 2000;161: 381–394. doi: 10.1016/S0031-0182(00)00094-8

9. Steinke S, Chiu H-Y, Yu P-S, Shen C-C, Löwemark L, Mii H-S, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions. Geochemistry, Geophys Geosystems. 2005;6: 1–12. doi: 10.1029/2005GC000926

10. Richey JN, Thirumalai K, Khider D, Reynolds CE, Partin JW, Quinn TM. Considerations for Globigerinoides ruber (White and Pink) Paleoceanography: Comprehensive Insights From a Long‐Running Sediment Trap. Paleoceanogr Paleoclimatology. 2019;34: 353–373. doi: 10.1029/2018PA003417

11. Gray WR, Weldeab S, Lea DW, Rosenthal Y, Gruber N, Donner B, et al. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): A global sediment trap calibration. Earth Planet Sci Lett. 2018;482: 607–620. doi: 10.1016/j.epsl.2017.11.026

12. Jentzen A, Schönfeld J, Schiebel R. Assessment of the Effect of Increasing Temperature On the Ecology and Assemblage Structure of Modern Planktic Foraminifers in the Caribbean and Surrounding Seas. J Foraminifer Res. 2018;48: 251–272. doi: 10.2113/gsjfr.48.3.251

13. Mojtahid M, Manceau R, Schiebel R, Hennekam R, de Lange GJ. Thirteen thousand years of southeastern Mediterranean climate variability inferred from an integrative planktic foraminiferal-based approach. Paleoceanography. 2015;30: 402–422. doi: 10.1002/2014PA002705

14. Antonarakou A, Kontakiotis G, Mortyn PG, Drinia H, Sprovieri M, Besiou E, et al. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico. Geochim Cosmochim Acta. 2015;170: 69–93. doi: 10.1016/j.gca.2015.08.003

15. Regoli F, de Garidel-Thoron T, Tachikawa K, Jian Z, Ye L, Droxler AW, et al. Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods. Paleoceanography. 2015;30: 439–455. doi: 10.1002/2014PA002696

16. Kawahata H. Stable isotopic composition of two morphotypes of Globigerinoides ruber (white) in the subtropical gyre in the North Pacific. Paleontol Res. 2005;9: 27–35.

17. Löwemark L, Hong W-L, Yui T-F, Hung G-W. A test of different factors influencing the isotopic signal of planktonic foraminifera in surface sediments from the northern South China Sea. Mar Micropaleontol. 2005;55: 49–62. doi: 10.1016/j.marmicro.2005.02.004

18. Numberger L, Hemleben C, Hoffmann R, Mackensen A, Schulz H, Wunderlich J-M, et al. Habitats, abundance patterns and isotopic signals of morphotypes of the planktonic foraminifer Globigerinoides ruber (d’Orbigny) in the eastern Mediterranean Sea since the Marine Isotopic Stage 12. Mar Micropaleontol. 2009;73: 90–104. doi: 10.1016/j.marmicro.2009.07.004

19. Carter A, Clemens S, Kubota Y, Holbourn A, Martin A. Differing oxygen isotopic signals of two Globigerinoides ruber (white) morphotypes in the East China Sea: Implications for paleoenvironmental reconstructions. Mar Micropaleontol. 2017;131: 1–9. doi: 10.1016/j.marmicro.2017.01.001

20. Schmitt A, Elliot M, Thirumalai K, La C, Bassinot F, Petersen J, et al. Single foraminifera Mg/Ca analyses of past glacial-interglacial temperatures derived from G. ruber sensu stricto and sensu lato morphotypes. Chem Geol. 2018; doi: 10.1016/j.chemgeo.2018.11.007

21. Thirumalai K, Richey JN, Quinn TM, Poore RZ. Globigerinoides ruber morphotypes in the Gulf of Mexico: A test of null hypothesis. Sci Rep. 2014;4: 1–7. doi: 10.1038/srep06018 25109442

22. Darling KF, Wade CM, Kroon D, Brown AJL. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar Micropaleontol. 1997;30: 251–266.

23. Darling KF, Wade CM, Kroon D, Brown AJL, Bijma J. The diversity and distribution of modern planktic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past circulation. Paleoceanography. 1999;14: 3–12. doi: 10.1029/1998PA900002

24. Darling KF, Wade CM. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol. 2008;67: 216–238. doi: 10.1016/j.marmicro.2008.01.009

25. Kuroyanagi A, Tsuchiya M, Kawahata H, Kitazato H. The occurrence of two genotypes of the planktonic foraminifer Globigerinoides ruber (white) and paleo-environmental implications. Mar Micropaleontol. 2008;68: 236–243. doi: 10.1016/j.marmicro.2008.04.004

26. Aurahs R, Grimm GW, Hemleben V, Hemleben C, Kucera M. Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber. Mol Ecol. 2009;18: 1692–1706. doi: 10.1111/j.1365-294X.2009.04136.x 19302352

27. Aurahs R, Treis Y, Darling K, Kucera M. A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on molecular and morphometric evidence. Mar Micropaleontol. 2011;79: 1–14. doi: 10.1016/j.marmicro.2010.12.001

28. Morard R, Escarguel G, Weiner AKM, André A, Douady CJ, Wade CM, et al. Nomenclature for the Nameless: A Proposal for an Integrative Molecular Taxonomy of Cryptic Diversity Exemplified by Planktonic Foraminifera. Syst Biol. 2016;65: 925–940. doi: 10.1093/sysbio/syw031 27073250

29. Caromel AGM, Schmidt DN, Rayfield EJ. Ontogenetic constraints on foraminiferal test construction. Evol Dev. 2017;19: 157–168. doi: 10.1111/ede.12224 28463472

30. Caromel AGM, Schmidt DN, Fletcher I, Rayfield EJ. Morphological Change During The Ontogeny Of The Planktic Foraminifera. J Micropalaeontology. 2015; 2014–017.

31. Weiner AKM, Morard R, Weinkauf MF, Darling KF, André A, Quillévéré F, et al. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution. Front Mar Sci. 2016;3: 1–15. doi: 10.3389/fmars.2016.00255

32. Wuyts J, Van de Peer Y, De Wachter R. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res. 2001;29: 5017–5028. doi: 10.1093/nar/29.24.5017 11812832

33. Morard R, Darling KF, Mahé F, Audic S, Ujiié Y, Weiner AKM, et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol Ecol Resour. 2015;15: 1472–1485. doi: 10.1111/1755-0998.12410 25828689

34. Pawlowski J, Holzmann M. A plea for DNA barcoding of foraminifera. J Foraminifer Res. 2014;44: 62–67. doi: 10.2113/gsjfr.44.1.62

35. Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol. 2012;21: 1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x 21883587

36. Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29: 2869–2876. doi: 10.1093/bioinformatics/btt499 23990417

37. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 23329690

38. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307–321. doi: 10.1093/sysbio/syq010 20525638

39. Lefort V, Longueville J, Gascuel O. SMS: Smart Model Selection in PhyML. Mol Biol Evol. 2017;34: 2422–2424. doi: 10.1093/molbev/msx149 28472384

40. Ujiié Y, Lipps JH. Cryptic diversity in planktonic foraminifera in the northwest Pacific ocean. J Foraminifer Res. 2009;39: 145–154.

41. André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, De Vargas C, et al. SSU rDNA divergence in planktonic foraminifera: Molecular taxonomy and biogeographic implications. PLoS One. 2014;9. doi: 10.1371/journal.pone.0104641 25119900

42. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Sea Surface Temperature Data; 2014 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA.

43. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA.

44. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Particulate Organic Carbon Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA.

45. Schmidtko S, Johnson GC, Lyman JM. MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J Geophys Res Ocean. 2013;118: 1658–1672. doi: 10.1002/jgrc.20122

46. Behrenfeld MJ, Falkowski PG. A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr. 1997;42: 1479–1491. doi: 10.4319/lo.1997.42.7.1479

47. Hammer Ø, Harper D a. T, Ryan PD. Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4: 9–18.

48. Aze T, Ezard THG, Purvis A, Coxall HK, Stewart DRM, Wade BS, et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol Rev. 2011;86: 900–927. doi: 10.1111/j.1469-185X.2011.00178.x 21492379

49. Kucera M, Schönfeld J. The origin of modern oceanic foraminiferal faunas and Neogene climate change. In: The Micropalaeontological Society SP, editor. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. London: The Geological Society; 2007. pp. 409–425.

50. Drummond AJ, Suchard M a. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 2010;8: 114. doi: 10.1186/1741-7007-8-114 20807414

51. Rambaut A. Tree Figure Drawing Tool Version 1.3.1. University of Edinburgh; 2009.

52. Fisher G, Arz H, Baschek B, Bassek D, Costa E, Dierssen H, et al. Report and preliminary results of METEOR-Cruise M34/4, Recife-Bridgetown, 19.3–15.4.1996. Berichte, Fachbereich Geowissenschaften, Universität Bremen, No 80, 105 pp. 1996;

53. Brummer G-J a., Hemleben C, Spindler M. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): A concept exemplified by Globigerinoides sacculifer (Brady) andG. Ruber (d’Orbigny). Mar Micropaleontol. 1987;12: 357–381. doi: 10.1016/0377-8398(87)90028-4

54. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31: 1116–1128. doi: 10.1016/j.neuroimage.2006.01.015 16545965

55. Raup DM. Geometric Analysis of Shell Coiling: Coiling in Ammonoids. J Paleontol. 1967;41: 43–65.

56. Darling KF, Kroon D, Wade CM, Leigh J. Molecular Phylogeny of the planktic foraminifera. J Foraminifer Res. 1996;26: 324–330.

57. Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Gouy M, Zaninetti L. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol. 1997;14: 498–505. doi: 10.1093/oxfordjournals.molbev.a025786 9159927

58. de Vargas C, Zaninetti L, Hilbrecht H, Pawlowski J. Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences compared to the fossil record. J Mol Evol. 1997;45: 285–294. doi: 10.1007/pl00006232 9302323

59. André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, De Vargas C, et al. SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS One. 2014;9: e104641. doi: 10.1371/journal.pone.0104641 25119900

60. Morard R, Mahé F, Romac S, Poulain J, Kucera M, De Vargas C. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci Rep. 2018;8:2539: 1–10. doi: 10.1038/s41598-018-20833-z 29416071

61. Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS One. 2019;14: e0213936. doi: 10.1371/journal.pone.0213936 30897140

62. Peeters FJC, Acheson R, Brummer G-J a, De Ruijter WPM, Schneider RR, Ganssen GM, et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature. 2004;430: 661–5. doi: 10.1038/nature02785 15295596

63. Weiner AKM, Weinkauf MFG, Kurasawa A, Darling KF, Kucera M, Grimm GW. Phylogeography of the tropical planktonic foraminifera lineage Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents. PLoS One. 2014;9: e92148. doi: 10.1371/journal.pone.0092148 24663038

64. Algar AC, Mahler DL, Glor RE, Losos JB. Niche incumbency, dispersal limitation and climate shape geographical distributions in a species-rich island adaptive radiation. Glob Ecol Biogeogr. 2013;22: 391–402. doi: 10.1111/geb.12003

65. Kuroyanagi A, Kawahata H. Vertical distribution of living planktonic foraminifera in the seas around Japan. Mar Micropaleontol. 2004;53: 173–196. doi: 10.1016/j.marmicro.2004.06.001

66. Capotondi L, Girone A, Lirer F, Bergami C, Verducci M, Vallefuoco M, et al. Central Mediterranean Mid-Pleistocene paleoclimatic variability and its association with global climate. Palaeogeogr Palaeoclimatol Palaeoecol. 2016;442: 72–83. doi: 10.1016/j.palaeo.2015.11.009

67. Bonfardeci A., Caruso A., Bartolini A., Bassinot F., Blanc-Valleron M.-M., 2018. Distribution and ecology of the Globigerinoides ruber—Globigerinoides elongatus morphotypes in the Azores region during the late Pleistocene-Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 92–111. doi: 10.1016/j.palaeo.2017.11.052

68. de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci U S A. 1999;96: 2864–2868. doi: 10.1073/pnas.96.6.2864 10077602

69. Morard R, Quillévéré F, Escarguel G, Ujiie Y, de Garidel-Thoron T, Norris RD, et al. Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar Micropaleontol. 2009;71: 148–165. doi: 10.1016/j.marmicro.2009.03.001

70. Marshall BJ, Thunell RC, Spero HJ, Henehan MJ, Lorenzoni L, Astor Y. Morphometric and stable isotopic differentiation of Orbulina universa morphotypes from the Cariaco Basin, Venezuela. Mar Micropaleontol. 2015;120: 46–64. doi: 10.1016/j.marmicro.2015.08.001

71. Morard R, Quillévéré F, Douady CJ, de Vargas C, de Garidel-Thoron T, Escarguel G. Worldwide genotyping in the planktonic foraminifer Globoconella inflata: Implications for life history and paleoceanography. PLoS One. 2011;6: e26665. doi: 10.1371/journal.pone.0026665 22028935

72. Morard R, Reinelt M, Chiessi CM, Groeneveld J, Kucera M. Tracing shifts of oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata. Paleoceanography. 2016;31.

73. de Vargas C, Renaud S, Hilbrecht H, Pawlowski J. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence. Paleobiology. 2001;27: 104–125.

74. Quillévéré F, Morard R, Escarguel G, Douady CJ, Ujiié Y, de Garidel-Thoron T, et al. Global scale same-specimen morpho-genetic analysis of Truncorotalia truncatulinoides: A perspective on the morphological species concept in planktonic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;391. doi: 10.1016/j.palaeo.2011.03.013

75. Ujiié Y, Asami T. Temperature is not responsible for left-right reversal in pelagic unicellular zooplanktons. J Zool. 2014;293: 16–24. doi: 10.1111/jzo.12095

76. Darling KF, Wade CM, Stewart I a, Kroon D, Dingle R, Brown a J. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature. 2000;405: 43–7. doi: 10.1038/35011002 10811211

77. Kucera M, Darling KF. Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Philos Trans A Math Phys Eng Sci. 2002;360: 695–718. doi: 10.1098/rsta.2001.0962 12804300

78. Morard R, Quillévéré F, Escarguel G, de Garidel-Thoron T, de Vargas C, Kucera M. Ecological modeling of the temperature dependence of cryptic species of planktonic Foraminifera in the Southern Hemisphere. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;391: 13–33. doi: 10.1016/j.palaeo.2013.05.011

79. Sadekov AY, Darling KF, Ishimura T, Wade CM, Kimoto K, Singh AD, et al. Geochemical imprints of genotypic variants of Globigerina bulloides in the Arabian Sea. Paleoceanography. 2016;

80. Darling KF, Kucera M, Pudsey CJ, Wade CM. Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proc Natl Acad Sci U S A. 2004;101: 7657–7662. doi: 10.1073/pnas.0402401101 15136732

81. Darling KF, Kucera M, Kroon D, Wade CM. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography. 2006;21: PA2011. doi: 10.1029/2005PA001189

82. Darling KF, Kucera M, Wade CM. Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. Proc Natl Acad Sci U S A. 2007;104: 5002–5007. doi: 10.1073/pnas.0700520104 17360336

83. André A, Quillévéré F, Schiebel R, Morard R, Howa H, Meilland J, et al. Disconnection between genetic and morphological diversity in the planktonic foraminifer Neogloboquadrina pachyderma from the Indian sector of the Southern Ocean. Mar Micropaleontol. 2018;144: 14–24. doi: 10.1016/j.marmicro.2018.10.001

84. Ujiié Y, Asami T, de Garidel-Thoron T, Liu H, Ishitani Y, de Vargas C. Longitudinal differentiation among pelagic populations in a planktic foraminifer. Ecol Evol. 2012;2: 1725–1737. doi: 10.1002/ece3.286 22957176

85. Ujiié Y, Ishitani Y. Evolution of a Planktonic Foraminifer during Environmental Changes in the Tropical Oceans. PLoS One. 2016;11: 1–16. doi: 10.1371/journal.pone.0148847 26886349

86. Weiner A, Aurahs R, Kurasawa A, Kitazato H, Kucera M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol Ecol. 2012;21: 4063–4073. doi: 10.1111/j.1365-294X.2012.05686.x 22738662

87. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. 2015;348: 1–10.

88. Rutherford S D’Hondt S, Prell W. Environmental controls on the geographic distribution of zooplankton diversity. Nature. 1999;400: 749–753. doi: 10.1038/23449

89. Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348: 1262073–1262073. doi: 10.1126/science.1262073 25999517

90. Decelle J, Colin S, Foster RA. Photosymbiosis in Marine Planktonic Protists. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists. Tokyo: Springer Japan; 2015. pp. 465–500.

91. Ezard THG, Edgar KM, Hull PM. Environmental and biological controls on size-specific δ 13 C and δ 18 O in recent planktonic foraminifera. Paleoceanography. 2015;30: 151–173. doi: 10.1002/2014PA002735

92. Takagi H, Moriya K, Ishimura T, Suzuki A, Kawahata H, Hirano H. Exploring photosymbiotic ecology of planktic foraminifers from chamber-by-chamber isotopic history of individual foraminifers. Paleobiology. 2015;41: 108–121. doi: 10.1017/pab.2014.7

93. Edgar KM, Hull PM, Ezard THG. Evolutionary history biases inferences of ecology and environment from δ13C but not δ18O values. Nat Commun. Springer US; 2017;8: 1–9. doi: 10.1038/s41467-017-01154-7 29062052

94. Takagi H., Kimoto K., Fujiki T., Moriya K., 2018. Effect of nutritional condition on photosymbiotic consortium of cultured Globigerinoides sacculifer (Rhizaria, Foraminifera). Symbiosis 76, 25–39. doi: 10.1007/s13199-017-0530-3 30147222

95. Takagi H, Kimoto K, Fujiki T, Kurasawa A, Moriya K, Hirano H. Ontogenetic dynamics of photosymbiosis in cultured planktic foraminifers revealed by fast repetition rate fluorometry. Mar Micropaleontol. 2016;122: 44–52. doi: 10.1016/j.marmicro.2015.10.003

96. Fujiki T, Takagi H, Kimoto K, Kurasawa a., Yuasa T, Mino Y. Assessment of algal photosynthesis in planktic foraminifers by fast repetition rate fluorometry. J Plankton Res. 2014;36: 1403–1407. doi: 10.1093/plankt/fbu083

97. LeKieffre C, Spero HJ, Russell AD, Fehrenbacher JS, Geslin E, Meibom A. Assimilation, translocation, and utilization of carbon between photosynthetic symbiotic dinoflagellates and their planktic foraminifera host. Mar Biol. Springer Berlin Heidelberg; 2018;165: 1–15. doi: 10.1007/s00227-018-3362-7

98. Takagi H, Kimoto K, Fujiki T, Saito H, Schmidt C, Kucera M, et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences Discuss. 2019; 1–32. doi: 10.5194/bg-2019-145

99. Shaked Y, de Vargas C. Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts. Mar Ecol Prog Ser. 2006;325: 59–71.

100. Leles SG, Mitra A, Flynn KJ, Stoecker DK, Hansen PJ, Calbet A, et al. Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proc R Soc B Biol Sci. 2017;284. doi: 10.1098/rspb.2017.0664 28768886

101. Brombacher A, Wilson PA, Bailey I, Ezard THG. Temperature is a poor proxy for synergistic climate forcing of plankton evolution. Proc R Soc B Biol Sci. 2018;285: 1–8. doi: 10.1098/rspb.2018.0665 30051846

102. Klingenberg CP. Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biol Rev. 1998;73: 79–123. doi: 10.1017/s000632319800512x 9569772

103. Wade BS, Olsson RK. Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;284: 39–46. doi: 10.1016/j.palaeo.2009.08.026

104. Fordham BG, Aze T, Haller C, Zehady AK, Pearson PN, Ogg JG, et al. Future-proofing the Cenozoic macroperforate planktonic foraminifera phylogeny of Aze & others (2011). Jonkers L, editor. PLoS One. 2018;13: e0204625. doi: 10.1371/journal.pone.0204625 30379910

105. Spring S. NOAA Atlas NESDIS 73 WORLD OCEAN ATLAS 2013 Volume 1: Temperature. 2013;1.

106. Siccha M, Kucera M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci Data. 2017;4:170109: 1–12. doi: 10.1038/sdata.2017.109 28829434

107. Schlitzer R. Ocean Data View. 2018. Available:

108. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2014.

109. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2009.

Článok vyšiel v časopise


2019 Číslo 12