Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer


Autoři: Fumiaki Watanabe aff001;  Koichi Suzuki aff001;  Sawako Tamaki aff001;  Iku Abe aff001;  Yuhei Endo aff001;  Yuji Takayama aff001;  Hideki Ishikawa aff001;  Nao Kakizawa aff001;  Masaaki Saito aff001;  Kazushige Futsuhara aff001;  Hiroshi Noda aff001;  Fumio Konishi aff002;  Toshiki Rikiyama aff001
Působiště autorů: Department of Surgery, Saitama Medical Center, Jichi Medical University, Amanuma-cho, Omiya-ku, Saitama, Japan aff001;  Nerima Hikarigaoka Hospital, Hikarigaoka, Nerima-ku, Tokyo, Japan aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227366

Souhrn

Background

Liquid biopsies enable the detection of circulating tumor DNA (ctDNA). However, the clinical significance of KRAS-mutated ctDNA for pancreatic cancer has been inconsistent with respect to its prognostic and predictive potential.

Methods and findings

A total of 422 blood samples were collected from 78 patients undergoing treatments for localized and metastatic pancreatic ductal adenocarcinoma. KRAS mutation in tissues and KRAS ctDNA levels in plasma were determined by RASKET and droplet digital polymerase chain reaction. Longitudinal monitoring of KRAS ctDNA was performed to assess its significance for predicting recurrence and prognosis and for evaluating therapeutic responses to chemotherapy compared with carbohydrate antigen 19–9 (CA19-9). In 67 tumor tissues, discrepancies in point mutations of KRAS were rarely observed among individual patients, implying that one targeted point mutation of KRAS can be determined in tumor tissues prior to longitudinal blood monitoring. One-time blood assessment of KRAS-mutated ctDNA before surgery or chemotherapy was not clearly associated with recurrence and prognosis. Sequential blood monitoring was performed in 39 patients who underwent surgery for potentially resectable tumors. Increased CA19-9 levels were significantly associated with recurrence, but not prognosis (P<0.001, P = 1.0, respectively), whereas emergence of KRAS ctDNA was significantly associated with prognosis (P<0.001) regardless of recurrence. Furthermore, in 39 patients who did not undergo surgery, detection of KRAS ctDNA was a predictive factor for prognosis (P = 0.005). Multivariate analysis revealed that detection of KRAS ctDNA was the only independent prognostic factor regardless of tumor resection (hazard ratios = 54.5 for patients who underwent surgery and 10.1 for patients who did not undergo surgery; P<0.001 for both). Patients without emergence of KRAS ctDNA within 1 year after surgery showed significantly better prognosis irrespective of recurrence (P<0.001). No detection or disappearance of KRAS ctDNA within 6 months of treatment was significantly correlated with therapeutic responses to first-line chemotherapy (P<0.001). Changes in KRAS status provided critical information for the prediction of therapeutic responses.

Conclusions

Our study showed for the first time that detection of KRAS ctDNA levels within a short period enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer.

Klíčová slova:

Blood – Cancer treatment – Circulating tumor DNA – Chemotherapy – Point mutation – Prognosis – Surgical and invasive medical procedures – Surgical oncology


Zdroje

1. Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H, et al. Cancer incidence and incidence rates in Japan in 2009: a study of 32 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol 2015;45:884–91. doi: 10.1093/jjco/hyv088 26142437

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7–34. doi: 10.3322/caac.21551 30620402

3. Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 2010;7:e1000267. doi: 10.1371/journal.pmed.1000267 20422030

4. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016;388:73–85. doi: 10.1016/S0140-6736(16)00141-0 26830752

5. Ferrone CR, Finkelstein DM, Thayer SP, Muzikansky A, Fernandez-delCastillo C, Warshaw AL. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 2006;24:2897–902. doi: 10.1200/JCO.2005.05.3934 16782929

6. De Mattos-Arruda L, Olmos D, Tabernero J. Prognostic and predictive roles for circulating biomarkers in gastrointestinal cancer. Future Oncol 2011;7:1385–97. doi: 10.2217/fon.11.122 22112315

7. Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 2007;635:105–17. doi: 10.1016/j.mrrev.2006.11.002 17257890

8. Kato S, Janku F. Cell-free DNA as a novel marker in cancer therapy. Biomark Med 2015;9:703–12. doi: 10.2217/bmm.15.38 26174844

9. Kim K, Shin DG, Park MK, Baik SH, Kim TH, Kim S, et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann Surg Treat Res 2014;86:136–42. doi: 10.4174/astr.2014.86.3.136 24761422

10. Mead R, Duku M, Bhandari P, Cree IA. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br J Cancer 2011;105:239–45. doi: 10.1038/bjc.2011.230 21712823

11. Kamat AA, Baldwin M, Urbauer D, Dang D, Han LY, Godwin A, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer 2010;116:1918–25. doi: 10.1002/cncr.24997 20166213

12. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011;83:8604–10. doi: 10.1021/ac202028g 22035192

13. Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A, et al. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res 2015;21:3552–60. doi: 10.1158/1078-0432.CCR-14-2151 25882755

14. Bidard FC, Madic J, Mariani P, Piperno-Neumann S, Rampanou A, Servois V, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer 2014;134:1207–13. doi: 10.1002/ijc.28436 23934701

15. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013;368:1199–209. doi: 10.1056/NEJMoa1213261 23484797

16. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14:985–90. doi: 10.1038/nm.1789 18670422

17. Takayama Y, Suzuki K, Muto Y, Ichida K, Fukui T, Kakizawa N, et al. Monitoring circulating tumor DNA revealed dynamic changes in KRAS status in patients with metastatic colorectal cancer. Oncotarget 2018;9:24398–413. doi: 10.18632/oncotarget.25309 29849949

18. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002;2:897–909. doi: 10.1038/nrc949 12459728

19. Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 2015;6:6744. doi: 10.1038/ncomms7744 25855536

20. Hashimoto D, Arima K, Yokoyama N, Chikamoto A, Taki K, Inoue R, et al. Heterogeneity of KRAS mutations in pancreatic ductal adenocarcinoma. Pancreas 2016;45:1111–4. doi: 10.1097/MPA.0000000000000624 26967456

21. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet 2017;49:358–66. doi: 10.1038/ng.3764 28092682

22. Castells A, Puig P, Mora J, Boadas J, Boix L, Urgell E, et al. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol 1999;17:578–84. doi: 10.1200/JCO.1999.17.2.578 10080602

23. Ako S, Nouso K, Kinugasa H, Dohi C, Matushita H, Mizukawa S, et al. Utility of serum DNA as a marker for KRAS mutations in pancreatic cancer tissue. Pancreatology 2017;17:285–90. doi: 10.1016/j.pan.2016.12.011 28139399

24. Chen L, Zhang Y, Cheng Y, Zhang D, Zhu S, Ma X. Prognostic value of circulating cell-free DNA in patients with pancreatic cancer: a systemic review and meta-analysis. Gene 2018;679:328–34. doi: 10.1016/j.gene.2018.09.029 30227250

25. Del Re M, Vivaldi C, Rofi E, Vasile E, Miccoli M, Caparello C, et al. Early changes in plasma DNA levels of mutant KRAS as a sensitive marker of response to chemotherapy in pancreatic cancer. Sci Rep 2017;7:7931. doi: 10.1038/s41598-017-08297-z 28801547

26. Tjensvoll K, Lapin M, Buhl T, Oltedal S, Steen-Ottosen Berry K, Gilje B, et al. Clinical relevance of circulating KRAS mutated DNA in plasma from patients with advanced pancreatic cancer. Mol Oncol 2016;10:635–43. doi: 10.1016/j.molonc.2015.11.012 26725968

27. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47. doi: 10.1016/j.ejca.2008.10.026 19097774

28. Chen H, Tu H, Meng ZQ, Chen Z, Wang P, Liu LM. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur J Surg Oncol 2010;36:657–62. doi: 10.1016/j.ejso.2010.05.014 20542658

29. Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res 2012;18:6339–47. doi: 10.1158/1078-0432.CCR-12-1215 22991414

30. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486:537–40. doi: 10.1038/nature11219 22722843

31. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883–92. doi: 10.1056/NEJMoa1113205 22397650

32. Rothe F, Laes JF, Lambrechts D, Smeets D, Vincent D, Maetens M, et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol 2014;25:1959–65. doi: 10.1093/annonc/mdu288 25185240

33. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010;467:1114–7. doi: 10.1038/nature09515 20981102

34. Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 2014;4:650–61. doi: 10.1158/2159-8290.CD-13-1014 24801577

35. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24.

36. Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer 2015;121:2271–80. doi: 10.1002/cncr.29364 25823825

37. Hadano N, Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer 2016;115:59–65. doi: 10.1038/bjc.2016.175 27280632

38. Ballehaninna UK, Chamberlain RS. The clinical utility of serum CA 19–9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J Gastrointest Oncol 2012;3:105–19. doi: 10.3978/j.issn.2078-6891.2011.021 22811878

39. Hartwig W, Strobel O, Hinz U, Fritz S, Hackert T, Roth C, et al. CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann Surg Oncol 2013;20:2188–96. doi: 10.1245/s10434-012-2809-1 23247983

40. Gall TMH, Belete S, Khanderia E, Frampton AE, Jiao LR. Circulating tumor cells and cell-free DNA in pancreatic ductal adenocarcinoma. Am J Pathol 2019;189:71–81. doi: 10.1016/j.ajpath.2018.03.020 30558725

41. Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, et al. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology 2019;156:108–18.e4. doi: 10.1053/j.gastro.2018.09.022 30240661

42. Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 2015;6:7686. doi: 10.1038/ncomms8686 26154128

43. Kruger S, Heinemann V, Ross C, Diehl F, Nagel D, Ormanns S, et al. Repeated mutKRAS ctDNA measurements represent a novel and promising tool for early response prediction and therapy monitoring in advanced pancreatic cancer. Ann Oncol 2018;29:2348–55. doi: 10.1093/annonc/mdy417 30346475


Článok vyšiel v časopise

PLOS One


2019 Číslo 12