Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows

Autoři: Louisa A. Rispoli aff001;  J. Lannett Edwards aff001;  Ky G. Pohler aff001;  Stephen Russell aff002;  Richard I. Somiari aff002;  Rebecca R. Payton aff001;  F. Neal Schrick aff001
Působiště autorů: Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America aff001;  ITSI–Biosciences, LLC, Johnstown, PA, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227095


We hypothesized that heat-induced perturbations in cumulus cells surrounding the maturing oocyte may extend to the mural granulosa of the periovulatory follicle in the heat-stressed cow to subsequently the follicular fluid proteome. Lactating Holsteins were pharmacologically stimulated to have a dominant follicle that was capable of responding to a gonadotropin releasing hormone-induced luteinizing hormone surge. Following gonadotropin releasing hormone administration, cows were maintained at ~67 temperature humidity index (THI; thermoneutral conditions) or exposed to conditions simulating an acute heat stress event (71 to 86 THI; heat stress for ~12 h). Dominant follicle collection was conducted in the periovulatory period ~16 h after gonadotropin releasing hormone. Follicular fluid proteome from thermoneutral (n = 5) and hyperthermic (n = 5) cows was evaluated by quantitative tandem mass spectrometry (nano LC-MS/MS). We identified 35 differentially-abundant proteins. Functional annotation revealed numerous immune-related proteins. Subsequent efforts revealed an increase in levels of the proinflammatory mediator bradykinin in follicular fluid (P = 0.0456) but not in serum (P = 0.9319) of hyperthermic cows. Intrafollicular increases in transferrin (negative acute phase protein) in hyperthermic cows (P = 0.0181) coincided with a tendency for levels to be increased in the circulation (P = 0.0683). Nine out of 15 cytokines evaluated were detected in follicular fluid. Heat stress increased intrafollicular interleukin 6 levels (P = 0.0160). Whether hyperthermia-induced changes in the heat-stressed cow’s follicular fluid milieu reflect changes in mural granulosa, cumulus, other cell types secretions, and/or transudative changes from circulation remains unclear. Regardless of origin, heat stress/hyperthermia related changes in the follicular fluid milieu may have an impact on components important for ovulation and competence of the cumulus-oocyte complex contained within the periovulatory follicle.

Klíčová slova:

Cytokines – Hyperthermia – Interleukins – Keratins – Oocytes – Progesterone – Proteomes – Follicular fluid


1. Robinson TP, Wint GR, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, et al. Mapping the global distribution of livestock. PLoS One. 2014;9(5):e96084. doi: 10.1371/journal.pone.0096084 24875496

2. Armstrong DV. Heat stress interaction with shade and cooling. J Dairy Sci. 1994;77(7):2044–50. doi: 10.3168/jds.S0022-0302(94)77149-6 7929964

3. De Rensis F, Garcia-Ispierto I, Lopez-Gatius F. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows. Theriogenology. 2015;84(5):659–66. doi: 10.1016/j.theriogenology.2015.04.021 26025242

4. St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci. 2003;86:E52–E77.

5. Gebremedhin KG, Hillman PE, Lee CN, Collier RJ, Willard ST, Arthington JD, et al. Sweating rates of dairy cows and beef heifers in hot conditions. Trans ASABE. 2008;51(6):2167–78.

6. Gaughan JB, Holt SM, Hahn GL, Mader TL, Eigenberg R. Respiration rate—is it a good measure of heat stress in cattle? Asian-Aust J Anim Sci. 2000;13(Suppl.):329–32.

7. Constable PD, Hinchcliff KW, Done SH, Grünberg W. Clinical examination and making a diagnosis. In: Veterinary Medicine: W.B. Saunders; 2017. pp. 1–28. doi: 10.2147/VMRR.S91360

8. Putney DJ, Mullins S, Thatcher WW, Drost M, Gross TS. Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between the onset of estrus and insemination. Anim Reprod Sci. 1989;19(1–2):37–51.

9. Edwards JL, Hansen PJ. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol Reprod. 1996;55(2):341–6. doi: 10.1095/biolreprod55.2.341 8828838

10. Lawrence JL, Payton RR, Godkin JD, Saxton AM, Schrick FN, Edwards JL. Retinol improves development of bovine oocytes compromised by heat stress during maturation. J Dairy Sci. 2004;87(8):2449–54. doi: 10.3168/jds.S0022-0302(04)73368-8 15328267

11. Zhandi M, Towhidi A, Nasr-Esfahani MH, Eftekhari-Yazdi P, Zare-Shahneh A. Unexpected detrimental effect of Insulin like growth factor-1 on bovine oocyte developmental competence under heat stress. J Assist Reprod Genet. 2009;26(11–12):605–11. doi: 10.1007/s10815-009-9364-0 19915974

12. Ascari IJ, Alves NG, Jasmin J, Lima RR, Quintao CCR, Oberlender G, et al. Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock: effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence. Domest Anim Endocrinol. 2017;60:50–60. doi: 10.1016/j.domaniend.2017.03.003 28445838

13. Cartmill JA, El-Zarkouny SZ, Hensley BA, Rozell TG, Smith JF, Stevenson JS. An alternative AI breeding protocol for dairy cows exposed to elevated ambient temperatures before or after calving or both. J Dairy Sci. 2001;84(4):799–806. doi: 10.3168/jds.S0022-0302(01)74536-5 11352155

14. Rutigliano HM, Lima FS, Cerri RL, Greco LF, Vilela JM, Magalhaes V, et al. Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows. J Dairy Sci. 2008;91(9):3323–36. doi: 10.3168/jds.2008-1005 18765591

15. Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev. 2018;64(5):385–92. doi: 10.1262/jrd.2018-029 29937465

16. Rispoli LA, Payton RR, Gondro C, Saxton AM, Nagle KA, Jenkins BW, et al. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production. Reproduction. 2013;146(2):193–207. doi: 10.1530/REP-12-0487 23744615

17. Goodwin MR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Developmental consequences of supplementing with matrix metallopeptidase-9 during in vitro maturation of heat-stressed bovine oocytes. J Reprod Dev. 2016;62(6):553–60. doi: 10.1262/jrd.2015-177 27440552

18. Bridges PJ, Brusie MA, Fortune JE. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest Anim Endocrinol. 2005;29(3):508–22. doi: 10.1016/j.domaniend.2005.02.017 16153500

19. Ealy AD, Drost M, Hansen PJ. Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J Dairy Sci. 1993;76(10):2899–905. doi: 10.3168/jds.S0022-0302(93)77629-8 8227617

20. Abbott CR, Saxton AM, Rispoli LA, Payton RR, Pohler KG, Schrick FN, et al. An in vivo model to assess the thermoregulatory response of lactating Holsteins to an acute heat stress event occurring after a pharmacologically-induced LH surge. J Therm Biol. 2018;78:247–56. doi: 10.1016/j.jtherbio.2018.10.003 30509643

21. Dikmen S, Hansen PJ. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J Dairy Sci. 2009;92(1):109–16. doi: 10.3168/jds.2008-1370 19109269

22. Mader TL, Davis MS, Brown-Brandl T. Environmental factors influencing heat stress in feedlot cattle. J Anim Sci. 2006;84(3):712–9. doi: 10.2527/2006.843712x 16478964

23. Parrish J, Susko-Parrish J, Winer M, First N. Capacitation of bovine sperm by heparin. Biol Reprod. 1988;38(5):1171–80. doi: 10.1095/biolreprod38.5.1171 3408784

24. Pohler KG, Pereira MHC, Lopes FR, Lawrence JC, Keisler DH, Smith MF, et al. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J Dairy Sci. 2016;99(2):1584–94. doi: 10.3168/jds.2015-10192 26709163

25. Kirby CJ, Smith MF, Keisler DH, Lucy MC. Follicular function in lactating dairy cows treated with sustained-release bovine somatotropin. J Dairy Sci. 1997;80(2):273–85. doi: 10.3168/jds.S0022-0302(97)75935-6 9058268

26. Ireland JJ, Roche JF. Development of antral follicles in cattle after prostaglandin-induced luteolysis: changes in serum hormones, steroids in follicular fluid, and gonadotropin receptors. Endocrinology. 1982;111(6):2077–86. doi: 10.1210/endo-111-6-2077 6291909

27. Fortune JE, Hansel W. Concentrations of steroids and gonadotropins in follicular fluid from normal heifers and heifers primed for superovulation. Biol Reprod. 1985;32(5):1069–79. doi: 10.1095/biolreprod32.5.1069 3926013

28. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D50. doi: 10.1093/nar/gky1106 30395289

29. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–D69. doi: 10.1093/nar/gkw1099 27899622

30. Arciero C, Somiari SB, Shriver CD, Brzeski H, Jordan R, Hu H, et al. Functional relationship and gene ontology classification of breast cancer biomarkers. Int J Biol Markers. 2003;18(4):241–72. doi: 10.5301/jbm.2008.1352 14756541

31. El-Bayoumy K, Das A, Russell S, Wolfe S, Jordan R, Renganathan K, et al. The effect of selenium enrichment on baker's yeast proteome. J Proteomics. 2012;75(3):1018–30. doi: 10.1016/j.jprot.2011.10.013 22067702

32. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70. doi: 10.1093/nar/gkv468 25969447

33. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–7. doi: 10.1093/nar/gkt1102 24243840

34. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–D55. doi: 10.1093/nar/gkx1132 29145629

35. Giordano J, Edwards J, Di Croce F, Roper D, Rohrbach N, Saxton A, et al. Ovulatory follicle dysfunction in lactating dairy cows after treatment with Folltropin-V at the onset of luteolysis. Theriogenology. 2013;79(8):1210–7. doi: 10.1016/j.theriogenology.2013.02.020 23534994

36. Min L, Cheng J, Zhao S, Tian H, Zhang Y, Li S, et al. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows. J Proteomics. 2016;146:99–108. doi: 10.1016/j.jprot.2016.06.008 27321583

37. Gao X, Greenbaum LM, Mahesh VB, Brann DW. Characterization of the kinin system in the ovary during ovulation in the rat. Biol Reprod. 1992;47(6):945–51. doi: 10.1095/biolreprod47.6.945 1493183

38. Kihara T, Kimura A, Moriyama A, Ohkubo I, Takahashi T. Identification of components of the intrafollicular bradykinin-producing system in the porcine ovary. Biol Reprod. 2000;62(5):1160–7. doi: 10.1095/biolreprod62.5.1160 10775162

39. Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev. 2019;40(2):369–416. doi: 10.1210/er.2018-00075 30496379

40. LeMaire WJ. Mechanism of mammalian ovulation. Steroids. 1989;54(5):455–69.

41. Tsafriri A, Reich R. Molecular aspects of mammalian ovulation. Exp Clin Endocrinol Diabetes. 1999;107(1):1–11. doi: 10.1055/s-0029-1212066 10077349

42. Ilha GF, dos Santos JT, da Silveira AM, Gutierrez K, Gewehr Cde C, de Oliveira SM, et al. Characterization of the kallikrein-kinin system during the bovine ovulation process. Peptides. 2011;32(10):2122–6. doi: 10.1016/j.peptides.2011.08.028 21939705

43. Plendl J, Snyman C, Bhoola KD. Expression of the tissue kallikrein-kinin cascade in granulosa cells of the ovary. Biol Chem. 2002;383(12):1917–24. doi: 10.1515/BC.2002.215 12553728

44. Balboula AZ, Yamanaka K, Sakatani M, Kawahara M, Hegab AO, Zaabel SM, et al. Cathepsin B activity has a crucial role in the developmental competence of bovine cumulus-oocyte complexes exposed to heat shock during in vitro maturation. Reproduction. 2013;146(4):407–17. doi: 10.1530/REP-13-0179 23898216

45. Wong MKS. Kallikrein-kinin system. In: Handbook of Hormones. San Diego: Academic Press; 2016. pp. 266–7.

46. Erdös EG, Sloane EM. An enzyme in human blood plasma that inactivates bradykinin and kallidins. Biochem Pharmacol. 1962;11(7):585–92.

47. Shinohara T, Sakurada C, Suzuki T, Takeuchi O, Campbell W, Ikeda S, et al. Pro-carboxypeptidase R cleaves bradykinin following activation. Int Arch Allergy Immunol. 1994;103(4):400–4. doi: 10.1159/000236661 8130654

48. Dobo J, Major B, Kekesi KA, Szabo I, Megyeri M, Hajela K, et al. Cleavage of kininogen and subsequent bradykinin release by the complement component: mannose-binding lectin-associated serine protease (MASP)-1. PLoS One. 2011;6(5):e20036. doi: 10.1371/journal.pone.0020036 21625439

49. Lalmanach G, Naudin C, Lecaille F, Fritz H. Kininogens: More than cysteine protease inhibitors and kinin precursors. Biochimie. 2010;92(11):1568–79. doi: 10.1016/j.biochi.2010.03.011 20346387

50. van der Graaf F, Rietveld A, Keus FJ, Bouma BN. Interaction of human plasma kallikrein and its light chain with alpha 2-macroglobulin. Biochemistry (Mosc). 1984;23(8):1760–6.

51. Yoshimura Y, Espey L, Hosoi Y, Adachi T, Atlas SJ, Ghodgaonkar RB, et al. The effects of bradykinin on ovulation and prostaglandin production by the perfused rabbit ovary. Endocrinology. 1988;122(6):2540–6. doi: 10.1210/endo-122-6-2540 3163547

52. Hellberg P, Larson L, Olofsson J, Hedin L, Brannstrom M. Stimulatory effects of bradykinin on the ovulatory process in the in vitro-perfused rat ovary. Biol Reprod. 1991;44(2):269–74. doi: 10.1095/biolreprod44.2.269 2009329

53. Roth Z, Meidan R, Braw-Tal R, Wolfenson D. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J Reprod Fertil. 2000;120(1):83–90. 11006149

54. Ryan DP. Factors affecting conceptus loss in cattle. Dissertation, Louisiana State University. 1990. Available from: https://digitalcommons.lsu.edu/gradschool_disstheses/5020

55. Entman SS, Maxson WS, Bradley CA, Osteen K, Webster BW, Vaughn WK, et al. Follicular fluid transferrin levels in preovulatory human follicles. J In Vitro Fert Embryo Transf. 1987;4(2):98–102. doi: 10.1007/bf01555447 3598308

56. Briggs DA, Sharp DJ, Miller D, Gosden RG. Transferrin in the developing ovarian follicle: evidence for de-novo expression by granulosa cells. Mol Hum Reprod. 1999;5(12):1107–14. doi: 10.1093/molehr/5.12.1107 10587364

57. Rispoli LA, Lawrence JL, Payton RR, Saxton AM, Schrock GE, Schrick FN, et al. Disparate consequences of heat stress exposure during meiotic maturation: embryo development after chemical activation vs fertilization of bovine oocytes. Reproduction. 2011;142(6):831–43. doi: 10.1530/REP-11-0032 21994359

58. Hoeben E, Wuyts A, Proost P, VanDamme J, Verhoeven G. Identification of IL-6 as one of the important cytokines responsible for the ability of mononuclear cells to stimulate Sertoli cell functions. Mol Cell Endocrinol. 1997;132(1–2):149–60. doi: 10.1016/s0303-7207(97)00132-9 9324056

59. Huleihel M, Lunenfeld E. Involvement of intratesticular IL-1 system in the regulation of Sertoli cell functions. Mol Cell Endocrinol. 2002;187(1–2):125–32. doi: 10.1016/s0303-7207(01)00690-6 11988319

60. Anderson KP, Lingrel JB. Differential regulation of rat T-kininogen by tumor necrosis factor and interleukin-6. Mol Endocrinol. 1990;4(4):543–50. doi: 10.1210/mend-4-4-543 1704100

61. Khan MM, Bradford HN, Isordia-Salas I, Liu Y, Wu Y, Espinola RG, et al. High-molecular-weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler Thromb Vac Biol. 2006;26(10):2260–6.

62. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57. doi: 10.1038/ni.3153 25898198

63. Kawasaki F, Kawano Y, Kosay Hasan Z, Narahara H, Miyakawa I. The clinical role of interleukin-6 and interleukin-6 soluble receptor in human follicular fluids. Clin Exp Med. 2003;3(1):27–31. doi: 10.1007/s102380300012 12748876

64. Bedaiwy M, Shahin AY, AbulHassan AM, Goldberg JM, Sharma RK, Agarwal A, et al. Differential expression of follicular fluid cytokines: relationship to subsequent pregnancy in IVF cycles. Reprod Biomed Online. 2007;15(3):321–5. doi: 10.1016/s1472-6483(10)60346-x 17854532

65. Altun T, Jindal S, Greenseid K, Shu J, Pal L. Low follicular fluid IL-6 levels in IVF patients are associated with increased likelihood of clinical pregnancy. J Assist Reprod Genet. 2011;28(3):245–51. doi: 10.1007/s10815-010-9502-8 21046223

66. Bromfield JJ, Sheldon IM. Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology. 2011;152(12):5029–40. doi: 10.1210/en.2011-1124 21990308

67. Liu Z, de Matos DG, Fan HY, Shimada M, Palmer S, Richards JS. Interleukin-6: an autocrine regulator of the mouse cumulus cell-oocyte complex expansion process. Endocrinology. 2009;150(7):3360–8. doi: 10.1210/en.2008-1532 19299453

68. Baskind NE, Orsi NM, Sharma V. Follicular-phase ovarian follicular fluid and plasma cytokine profiling of natural cycle in vitro fertilization patients. Fertil Steril. 2014;102(2):410–8. doi: 10.1016/j.fertnstert.2014.04.032 24875396

69. Samir M, Glister C, Mattar D, Laird M, Knight PG. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-alpha (TNFalpha), interleukin 6 (IL6) and their receptors in cattle: TNFalpha, IL6 and macrophages suppress thecal androgen production in vitro. Reproduction. 2017;154(1):35–49. doi: 10.1530/REP-17-0053 28432091

70. Ducolomb Y, Gonzalez-Marquez H, Fierro R, Jimenez I, Casas E, Flores D, et al. Effect of porcine follicular fluid proteins and peptides on oocyte maturation and their subsequent effect on in vitro fertilization. Theriogenology. 2013;79(6):896–904. doi: 10.1016/j.theriogenology.2013.01.024 23453254

71. Lewandowska AE, Macur K, Czaplewska P, Liss J, Lukaszuk K, Oldziej S. Qualitative and quantitative analysis of proteome and peptidome of human follicular fluid using multiple samples from single donor with LC-MS and SWATH methodology. J Proteome Res. 2017;16(8):3053–67. doi: 10.1021/acs.jproteome.7b00366 28658951

72. Shen X, Liu X, Zhu P, Zhang Y, Wang J, Wang Y, et al. Proteomic analysis of human follicular fluid associated with successful in vitro fertilization. Reprod Biol Endocrinol. 2017;15(1):58. doi: 10.1186/s12958-017-0277-y 28750635

73. Poulsen LlC, Pla I, Sanchez A, Grøndahl ML, Marko-Varga G, Yding Andersen C, et al. Progressive changes in human follicular fluid composition over the course of ovulation: quantitative proteomic analyses. Mol Cell Endocrinol. 2019;495:110522. doi: 10.1016/j.mce.2019.110522 31356852

74. De Neubourg D, Gerris J, Knaapen M, Kockx M. Human granulosa cells after ovulation induction show caspase-independent cell death. Gynecol Obstet Invest. 2003;56(2):106–12. doi: 10.1159/000072997 12937344

75. Ben-Ze'ev A, Amsterdam A. Regulation of cytoskeletal protein organization and expression in human granulosa cells in response to gonadotropin treatment. Endocrinology. 1989;124(2):1033–41. doi: 10.1210/endo-124-2-1033 2492216

76. Ben-Ze'ev A, Kohen F, Amsterdam A. Gonadotropin-induced differentiation of granulosa cells is associated with the co-ordinated regulation of cytoskeletal proteins involved in cell-contact formation. Differentiation. 1987;34(3):222–35. doi: 10.1111/j.1432-0436.1987.tb00070.x 2828140

77. Nivet AL, Vigneault C, Blondin P, Sirard MA. Changes in granulosa cells' gene expression associated with increased oocyte competence in bovine. Reproduction. 2013;145(6):555–65. doi: 10.1530/REP-13-0032 23564726

78. Ferrazza RA, Garcia HDM, Schmidt E, Mihm Carmichael M, Souza FF, Burchmore R, et al. Quantitative proteomic profiling of bovine follicular fluid during follicle development. Biol Reprod. 2017;97(6):835–49. doi: 10.1093/biolre/iox148 29149247

79. Zachut M, Sood P, Levin Y, Moallem U. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. J Proteomics. 2016;139:122–9. doi: 10.1016/j.jprot.2016.03.027 27003612

Článok vyšiel v časopise


2019 Číslo 12