Iron nanoparticle-labeled murine mesenchymal stromal cells in an osteoarthritic model persists and suggests anti-inflammatory mechanism of action


Autoři: Amanda M. Hamilton aff001;  Wing-Yee Cheung aff002;  Alejandro Gómez-Aristizábal aff002;  Anirudh Sharma aff002;  Sayaka Nakamura aff002;  Amélie Chaboureau aff002;  Shashank Bhatt aff002;  Razieh Rabani aff002;  Mohit Kapoor aff002;  Paula J. Foster aff001;  Sowmya Viswanathan aff002
Působiště autorů: Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada aff001;  The Arthritis Program, Toronto Western Hospital, Toronto, ON, Canada aff002;  Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada aff003;  Department of Surgery, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada aff004;  Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada aff005;  Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada aff006;  Department of Medicine, University of Toronto, Toronto, ON, Canada aff007
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0214107

Souhrn

Osteoarthritis (OA) is characterized by cartilage degradation and chronic joint inflammation. Mesenchymal stem cells (MSCs) have shown promising results in OA, but their mechanism of action is not fully understood. We hypothesize that MSCs polarize macrophages, which are strongly associated with joint inflammation to more homeostatic sub-types. We tracked ferumoxytol (Feraheme, iron oxide nanoparticle)-labeled murine MSCs (Fe-MSCs) in murine OA joints, and quantified changes to joint inflammation and fibrosis. 10-week-old C57BL/6 male mice (n = 5/group) were induced to undergo osteoarthritis by destabilization of medical meniscus (DMM) or sham surgery. 3 weeks post-surgery, mice were injected intra-articularly with either fluorescent dye-(DiR) labeled or DiR-Fe-MSC or saline to yield 4 groups (n = 5 per group for each timepoint [1, 2 and 4weeks]). 4 weeks after injection, mice were imaged by MRI, and scored for i) OARSI (Osteoarthritis Research Society International) to determine cartilage damage; ii) immunohistochemical changes in iNOS, CD206, F4/80 and Prussian Blue/Sca-1 to detect pro-inflammatory, homeostatic and total macrophages and ferumoxytol -labeled MSCs respectively, and iii) Masson’s Trichrome to detect changes in fibrosis. Ferumoxytol-labeled MSCs persisted at greater levels in DMM vs. SHAM-knee joints. We observed no difference in OARSI scores between MSC and vehicle groups. Sca-1 and Prussian Blue co-staining confirmed the ferumoxytol label resides in MSCs, although some ferumoxytol label was detected in proximity to MSCs in macrophages, likely due to phagocytosis of apoptotic MSCs, increasing functionality of these macrophages through MSC efferocytosis. MRI hypertintensity scores related to fluid edema decreased in MSC-treated vs. control animals. For the first time, we show that MSC-treated mice had increased ratios of %CD206+: %F4/80+ (homeostatic macrophages) (p<0.05), and decreased ratios of %iNOS+: %F4/80+ macrophages (p<0.01), supporting our hypothesis that MSCs may modulate synovial inflammation.

Klíčová slova:

Inflammation – Knee joints – Knees – Macrophages – Magnetic resonance imaging – Mesenchymal stem cells – Osteoarthritis – Skeletal joints


Zdroje

1. Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA (2016) Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015–2040. Arthritis Rheumatol 68: 1582–1587. doi: 10.1002/art.39692 27015600

2. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Molto F, Nunez-Cordoba JM, et al. (2016) Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med 14: 246. doi: 10.1186/s12967-016-0998-2 27565858

3. Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, et al. (2016) Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl Med 5: 847–856. doi: 10.5966/sctm.2015-0245 27217345

4. Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, et al. (2015) Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation 99: 1681–1690. doi: 10.1097/TP.0000000000000678 25822648

5. Orozco L, Munar A, Soler R, Alberca M, Soler F, et al. (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95: 1535–1541. doi: 10.1097/TP.0b013e318291a2da 23680930

6. Bastos R, Mathias M, Andrade R, Bastos R, Balduino A, et al. (2018) Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 26: 3342–3350. doi: 10.1007/s00167-018-4883-9 29511819

7. Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, et al. (2013) Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29: 684–694. doi: 10.1016/j.arthro.2012.12.008 23380230

8. Chahal J, Gomez-Aristizabal A, Shestopaloff K, Bhatt S, Chaboureau A, et al. (2019) Bone Marrow Mesenchymal Stromal Cells in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation. Stem Cells Transl Med.

9. Laria A, Lurati A, Marrazza M, Mazzocchi D, Re KA, et al. (2016) The macrophages in rheumatic diseases. Journal of Inflammation Research 9: 1–11. doi: 10.2147/JIR.S82320 26929657

10. O’Brien K, Tailor P, Leonard C, DiFrancesco LM, Hart DA, et al. (2017) Enumeration and Localization of Mesenchymal Progenitor Cells and Macrophages in Synovium from Normal Individuals and Patients with Pre-Osteoarthritis or Clinically Diagnosed Osteoarthritis. International Journal of Molecular Sciences 18: 774.

11. Thu MS, Bryant LH, Coppola T, Jordan EK, Budde MD, et al. (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18: 463–467. doi: 10.1038/nm.2666 22366951

12. Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, et al. (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 8: 1969–1983.

13. Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, et al. (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14: R31. doi: 10.1186/ar3735 22314040

14. Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, et al. (2013) Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheum 65: 1786–1794. doi: 10.1002/art.37960 23553439

15. Gómez-Aristizábal A GR, Marshall WK, Mahomed N, Viswanathan S. (2019) Synovial fluid levels of monocyte/macrophages and T cells correlates with osteoarthritis clinical and radiographic outcomes. Arthritis Research & Therapy 21(1): 26.

16. Glasson SS, Blanchet TJ, Morris EA (2007) The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 15: 1061–1069. doi: 10.1016/j.joca.2007.03.006 17470400

17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262 11846609

18. Glasson SS, Chambers MG, Van Den Berg WB, Little CB (2010) The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18 Suppl 3: S17–23.

19. Gerwin N, Bendele AM, Glasson S, Carlson CS (2010) The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis Cartilage 18 Suppl 3: S24–34.

20. Krenn V, Morawietz L, Haupl T, Neidel J, Petersen I, et al. (2002) Grading of chronic synovitis—a histopathological grading system for molecular and diagnostic pathology. Pathol Res Pract 198: 317–325. doi: 10.1078/0344-0338-5710261 12092767

21. Liu L, Tseng L, Ye Q, Wu YL, Bain DJ, et al. (2016) A New Method for Preparing Mesenchymal Stem Cells and Labeling with Ferumoxytol for Cell Tracking by MRI. Sci Rep 6: 26271. doi: 10.1038/srep26271 27188664

22. Daldrup-Link HE, Golovko D, Ruffell B, Denardo DG, Castaneda R, et al. (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17: 5695–5704. doi: 10.1158/1078-0432.CCR-10-3420 21791632

23. Delling U, Brehm W, Ludewig E, Winter K, Julke H (2015) Longitudinal evaluation of effects of intra-articular mesenchymal stromal cell administration for the treatment of osteoarthritis in an ovine model. Cell Transplant 24: 2391–2407. doi: 10.3727/096368915X686193 25581789

24. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, et al. (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89: 1235–1249. doi: 10.1002/jcb.10594 12898521

25. Wang Y, Yu D, Liu Z, Zhou F, Dai J, et al. (2017) Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 8: 189. doi: 10.1186/s13287-017-0632-0 28807034

26. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35. doi: 10.1038/nri978 12511873

27. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176: 287–292. doi: 10.1084/jem.176.1.287 1613462

28. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958–969. doi: 10.1038/nri2448 19029990

29. Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, et al. (2017) Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 9.

30. Lu W, Fu C, Song L, Yao Y, Zhang X, et al. (2013) Exposure to supernatants of macrophages that phagocytized dead mesenchymal stem cells improves hypoxic cardiomyocytes survival. Int J Cardiol 165: 333–340. doi: 10.1016/j.ijcard.2012.03.088 22475845

31. Daghestani HN, Pieper CF, Kraus VB (2015) Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol 67: 956–965. doi: 10.1002/art.39006 25544994

32. Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, et al. (2016) Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage 24: 1613–1621. doi: 10.1016/j.joca.2016.04.010 27084348

33. Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B, et al. (2010) The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum 62: 647–657. doi: 10.1002/art.27290 20187160

34. Schelbergen RF, van Dalen S, ter Huurne M, Roth J, Vogl T, et al. (2014) Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels. Osteoarthritis Cartilage 22: 1158–1166. doi: 10.1016/j.joca.2014.05.022 24928317

35. Muehe AM, Feng D, von Eyben R, Luna-Fineman S, Link MP, et al. (2016) Safety Report of Ferumoxytol for Magnetic Resonance Imaging in Children and Young Adults. Invest Radiol 51: 221–227. doi: 10.1097/RLI.0000000000000230 26656202

36. Jasmin, de Souza GT, Louzada RA, Rosado-de-Castro PH, Mendez-Otero R, et al. (2017) Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. Int J Nanomedicine 12: 779–793. doi: 10.2147/IJN.S126530 28182122

37. Theruvath AJ, Nejadnik H, Lenkov O, Yerneni K, Li K, et al. (2019) Tracking Stem Cell Implants in Cartilage Defects of Minipigs by Using Ferumoxytol-enhanced MRI. Radiology: 182176.


Článok vyšiel v časopise

PLOS One


2019 Číslo 12