Selection of valid reference genes for quantitative real-time PCR in Cotesia chilonis (Hymenoptera: Braconidae) exposed to different temperatures
Autoři:
Qiu-Yu Li aff001; Zi-Lan Li aff001; Ming-Xing Lu aff001; Shuang-Shuang Cao aff001; Yu-Zhou Du aff001
Působiště autorů:
School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
aff001; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry, Yangzhou, China
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226139
Souhrn
In quantitative real-time PCR (qRT-PCR), data are normalized using reference genes, which helps to control for internal differences and reduce error among samples. In this study, the expression profiles of eight candidate housekeeping genes, 18S ribosomal (18S rRNA), elongation factor (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein L17 (RPL17), histone 3 (H3), arginine kinase (AK), amd β-Actin (ACTB), were evaluated in the parasitic wasp Cotesia chilonis in response to different temperatures. Specifically, the performance and stabilities of these genes were compared in adult wasps maintained in a growth condition at 27°C (normal storage conditions) and in adults obtained from pupae refrigerated at 4°C for five days (cold storage conditions). Data were analyzed using the ΔCt method, BestKeeper, NormFinder, and geNorm. The optimal numbers and stabilities of reference genes varied between the two temperature treatments (27°C and 4°C). In samples stored at normal developmental temperature (27°C), the requirement for normalization in response to low temperature exposures was three genes (18S, H3, AK), whereas normalization in response to high temperature exposures required only two reference genes (GAPDH, ACTB). In samples stored at cold temperature (4°C), for low temperature exposures two reference genes (RPL17, RPL10) were required for standardization, while following high temperature exposures three reference genes (18S, H3, ACTB) were needed. This study strengthens understanding of the selection of reference genes before qRT-PCR analysis in C. chilonis. The reference genes identified here will facilitate further investigations of the biological characteristics of this important parasitoid.
Klíčová slova:
Gene expression – Insects – Polymerase chain reaction – RNA extraction – Larvae – Ribosomal RNA – Specimen storage – RNA isolation
Zdroje
1. Huang J, Wu SF, Ye GY. Evaluation of lethal effects of chlorantraniliprole on Chilo suppressalis and its larval parasitoid, Cotesia chilonis. Agr Sci China 2011; 10:1134–1138.
2. Wu SF, Sun FD, Qi YX, Yao Y, Fang Q, Huang J, Stanley D, Ye GY. Parasitization by Cotesia chilonis Influences Gene Expression in Fatbody and Hemocytes of Chilo suppressalis. PLoS ONE. 2013; 8: e74309. doi: 10.1371/journal.pone.0074309 24086331
3. Okech SHO, Overholt WA. Comparative biology of Cotesia chilonis (Hymenoptera: Braconidae) on selected African gramineous stemborers. Biocontrol Sci. Techn. 1996; 6: 595–602.
4. Hailemichael Y, Schulthess F, Smith J, Overholt W, Chabi-Olaye A. Resource allocation and bionomics of indigenous and exotic Cotesia (Hymenoptera: Braconidae) species reared on Sesamia calamistis B. Entomol. Res. 2008; 98:405–415.
5. Pan DD, Lu MX, Cao SS, Yan WF, Du YZ. Species and occurrence dynamics of parasitic wasps of the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) in Yangzhou. Journal of Environmental Entomology. 2016; 38(6): 1106–1113.
6. Kajita H, Drake EF. Biology of Apanteles chilonis and A. flavipes (Hymenoptera: Braconidae) parasites of Chilo suppressalis. Mushi. 1969.
7. Pan DD, Cao SS, Lu MX, Hang SB, Du YZ. Genes encoding heat shock proteins in the endoparasitoid wasp, Cotesia chilonis, and their expression in response to temperatures. Journal of Integrative Agriculture. 2018; 17(5): 1012–1022.
8. Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotech. 1992; 10:413–417.
9. Bustin S. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J. Mol. Endocrinol. 2000; 25: 169–193. doi: 10.1677/jme.0.0250169 11013345
10. Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 2002; 30: 503–512. doi: 10.1016/s0301-472x(02)00806-8 12063017
11. Kubista M, Andrade J.M, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N. The real-time polymerase chain reaction. Mol. Aspects Med. 2006; 27: 95–125. doi: 10.1016/j.mam.2005.12.007 16460794
12. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008; 44: 619–626. doi: 10.2144/000112776 18474036
13. Citri A, Pang Z, Südhof T, Wernig M, Malenka RC. Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat. Protoc. 2012; 7: 118–117.
14. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A. Heinen E Housekeeping genes as internal standards: use and limits. J. Biotech. 1999; 75: 291–295.
15. Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. Biotech. 2000; 29: 332–337.
16. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper-Excel-based tool using pair-wise correlations. Biotech. Lett. 2004; 26: 509–515.
17. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009; 55: 611–622. doi: 10.1373/clinchem.2008.112797 19246619
18. Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods. 2010;50: 227–230. doi: 10.1016/j.ymeth.2009.11.001 19969088
19. Tunbridge EM, Eastwood SL, Harrison PJ. Changed relative to what? housekeeping genes and normalization strategies human brain gene expression studies. Biol. Psychiatry. 2011; 69: 173–179. doi: 10.1016/j.biopsych.2010.05.023 20673871
20. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64: 5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 15289330
21. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol.2011; 3: 1–12.
22. Fu W, Xie W, Zhang Z, Wang SL, Wu QJ, Liu Y, Zhou XM, Zhou XG, Zhang YJ. Exploring valid reference genes for quantitative real-time PCR analysis in Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Biol. Sci. 2013; 9: 792. doi: 10.7150/ijbs.5862 23983612
23. Li R, Xie W, Wang S, Wang S.L, Wu QJ, Liu Y, Zhou XM, Zhou XG, Zhang YJ. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE. 2013; 8: e53006. doi: 10.1371/journal.pone.0053006 23308130
24. Jin P, Zhao Y, Ngalame Y, Panelli MC, Nagorsen D, Monsurró V, Smith K, Hu N, Su H, Taylor PR, Marincola FM, Wang E. Selection and validation of endogenous reference genes using a high throughput approach. BMC Genomics. 2004; 5: 55. doi: 10.1186/1471-2164-5-55 15310404
25. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR, Biochem. Biophys. Res. Commun. 2004; 313: 856–862 doi: 10.1016/j.bbrc.2003.11.177 14706621
26. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005; 6: 279–284 doi: 10.1038/sj.gene.6364190 15815687
27. Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 2005; 56: 2907–2914. doi: 10.1093/jxb/eri285 16188960
28. Hendriks-Balk MC, Michel MC, Alewijnse AE. Pitfalls in the normalization of real-time polymerase chain reaction data. Basic Res. Cardiol. 2007; 102: 195–197. doi: 10.1007/s00395-007-0649-0 17370033
29. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions specific, validation of references. J. Exp. Bot. 2009; 60: 487–493. doi: 10.1093/jxb/ern305 19264760
30. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 2009; 10:11. doi: 10.1186/1471-2199-10-11 19232096
31. Xie W, Meng QS, Wu QJ, Wang SL, Yang X, Yang NN, Li RM, Jiao XG, Pan HP, Liu BM, Su Q, Xu BY, Hu SN, Zhou XG, Zhang YJ. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS ONE. 2012; 7: e35181. doi: 10.1371/journal.pone.0035181 22558125
32. Zheng YT, Li HB, Lu MX, Du YZ. Evaluation and validation of reference genes for qRT-PCR normalization in Frankliniella occidentalis (Thysanoptera: Thripidae). PloS one. 2014; 9: e111369. doi: 10.1371/journal.pone.0111369 25356721
33. Xu J, Lu MX, Cui YD, Du YZ. Selection and Evaluation of Reference Genes for Expression Analysis Using qRT-PCR in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2017; doi: 10.1093/jee/tow297
34. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3: 1–12.
35. Xie F, Sun G, Stiller JW, Zhang B. Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PLoS ONE. 2011; 6: e26980. doi: 10.1371/journal.pone.0026980 22087239
36. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Bio Techniques. 2005; 39: 75–85.
37. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc.2006; 1: 1559–1582. doi: 10.1038/nprot.2006.236 17406449
38. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR–a perspective. J. Mol. Endocrinol. 2005; 34 (2005) 597–601.
39. Willems E, Mateizel I, Kemp C, Cauffman G, Sermon K, Leyns L. Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int. J. Dev. Biol. 2006; 50:627–635. doi: 10.1387/ijdb.052130ew 16892176
40. Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol. 2010; 10:71. doi: 10.1186/1471-2229-10-71 20403198
41. Cheng D, Zhang Z, He X, Liang GW. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE. 2013; 8: e57718. doi: 10.1371/journal.pone.0057718 23469057
42. Lourenco AP, Mackert A, Cristino AS, Simes ZLP. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie. 2008; 39: 372–385.
43. Scharlaken B, De Graaf DC, Goossens K, Brunain M, Peelman L, Jacobs FJ. Reference gene selection for insect expression studies using quantitative real-time PCR: The head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci. 2008; 8(33):1–10.
44. Kucharski R, Maleszka R. Arginine kinase is highly expressed in the compound eye of the honeybee, Apis mellifera. Gene. 1998; 211(2):343–349. doi: 10.1016/s0378-1119(98)00114-0 9602169
45. Horňáková D, Matoušková P, Kindl J, Valterová I, Pichová I. Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Analytical Biochemistry. 2010; 397(1):118–120. doi: 10.1016/j.ab.2009.09.019 19751695
46. Lu YH, Yuan M, Gao XW, Kang TH, Zhan S, Wan H, Li JH. Identification and Validation of Reference Genes for Gene Expression Analysis Using Quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE. 2013; 8(7):e68059. doi: 10.1371/journal.pone.0068059 23874494
47. Sun M, Lu MX, Tang XT, Du YZ. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae). PloS one. 2015; 10: e0115979. doi: 10.1371/journal.pone.0115979 25585250
48. Winnepenninckx B, Backeljau De, Wachtert R. Investigation of molluscan phylogeny on the basis of 18S rRNA sequences. Mol Biol Evol. 1996; 13 (10): 1306–1317. doi: 10.1093/oxfordjournals.molbev.a025577 8952075
49. Weigand AM, Dinapoli A, Klussmann-Kolb A. Research note 18S rRNA variability map for Gastropoda. J Mollus Stud. 2011; 78(1): 151–156.
50. Shen GM, Jiang HB, Wang XN, Wang JJ. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Mol. Biol. 2010; 11:7. doi: 10.1186/1471-2199-11-7
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- 100 let s metamizolem: jaké je jeho současné postavení v léčbě bolesti
- Masturbační chování žen v ČR − dotazníková studie