The correlation between optical coherence tomography retinal shape irregularity and axial length


Autoři: Stewart Lake aff001;  Murk Bottema aff002;  Keryn Williams aff001;  Karen Reynolds aff002
Působiště autorů: Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia aff001;  Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227207

Souhrn

Purpose

To describe the retinal contour in optical coherence tomography (OCT) images, and report the relationship between retinal contour and axial length.

Methods

Retinal contour was defined by the path of the retinal pigment epithelial (RPE) line in macular and extra-macular OCTs of 70 eyes of 70 participants recruited from ophthalmology clinics in South Australia. The shape of this contour was described by the best-fit curvature (K), and Fourier analysis of the difference between K and the RPE. The Fourier transformation was summarised by total difference (sumdiff), maximum single frequency difference (MaxE), and root mean square difference (rmse) between each B scan residual and the average normal. All-of-eye and regional median and interquartile range (IQR) shape features were correlated to axial length.

Results

Retinal shape irregularity measured by Fourier transformation correlated with axial length: all-of-eye median and IQR sumdiff (ρ = 0.66 and ρ = 0.60 respectively), median and IQR rmse (ρ = 0.67 and ρ = 0.48), median MaxE (ρ = 0.61), and IQR K (ρ = 0.61) all correlated with axial length. Correlation with axial length was also seen in these parameters for 11 of 17 regions. Retinal irregularity was greatest at the macula and in inferior regions.

Conclusion

Retinal OCT shape becomes increasingly irregular as axial length increases. The range of curvature correlates with axial length, while median curvature does not.

Klíčová slova:

Magnetic resonance imaging – Eye diseases – Eyes – Tomography – Pigments – Retina – Fourier analysis – Curvature


Zdroje

1. Sonka M, Abràmoff MD. Quantitative analysis of retinal OCT. Medical Image Analysis. 2016;33: 165–169. doi: 10.1016/j.media.2016.06.001 27503080

2. Wakazono T, Yamashiro K, Miyake M, Nakanishi H, Oishi A, Ooto S, et al. Association between Eye Shape and Myopic Traction Maculopathy in High Myopia. Ophthalmology. 2016;123(4): 919–921. doi: 10.1016/j.ophtha.2015.10.031 26686963

3. Gaucher D, Erginay A, Lecleire-Collet A, Haouchine B, Puech M, Cohen SY, et al. Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol. 2008;145(5): 909–914. doi: 10.1016/j.ajo.2008.01.012 18342827

4. Ohno-Matsui K, Akiba M, Modegi T, Tomita M, Ishibashi T, Tokoro T, et al. Association between Shape of Sclera and Myopic Retinochoroidal Lesions in Patients with Pathologic MyopiaSclera in Pathologic Myopia. Investigative Ophthalmology & Visual Science. 2012;53(10): 6046–6061.

5. Shinohara K, Tanaka N, Jonas JB, Shimada N, Moriyama M, Yoshida T, et al. Ultrawide-Field OCT to Investigate Relationships between Myopic Macular Retinoschisis and Posterior Staphyloma. Ophthalmology. 2018;125(10): 1575–1586. doi: 10.1016/j.ophtha.2018.03.053 29716783

6. Ohno-Matsui K. What is the fundamental nature of pathologic myopia? Retina. 2017;37(6): 1043–1048. doi: 10.1097/IAE.0000000000001348 27755375

7. Atchison DA, Jones CE, Schmid KL, Pritchard N, Pope JM, Strugnell WE, et al. Eye Shape in Emmetropia and Myopia. Investigative Ophthalmology & Visual Science. 2004;45(10): 3380–3386.

8. Singh KD, Logan NS, Gilmartin B. Three-Dimensional Modeling of the Human Eye Based on Magnetic Resonance Imaging. Investigative Ophthalmology & Visual Science. 2006;47(6): 2272–2279.

9. Moriyama M, Ohno-Matsui K, Hayashi K, Shimada N, Yoshida T, Tokoro T, et al. Topographic Analyses of Shape of Eyes with Pathologic Myopia by High-Resolution Three-Dimensional Magnetic Resonance Imaging. Ophthalmology.2011; 118(8): 1626–1637. doi: 10.1016/j.ophtha.2011.01.018 21529960

10. Miyake M, Yamashiro K, Akagi-Kurashige Y, Oishi A, Tsujikawa A, Hangai M, et al. Analysis of fundus shape in highly myopic eyes by using curvature maps constructed from optical coherence tomography. PLoS One. 2014;9(9): e107923. https://doi.org/10.1371/journal.pone.0107923 25259853

11. Kuo AN, Liu A, Wong CW, McNabb RP, Lee SY, Cheung GCM, et al. Curvature Differences in Myopic Eyes With and Without Staphyloma using OCT. Investigative Ophthalmology & Visual Science. 2019;60(9): 4356.

12. Shinohara K, Shimada N, Moriyama M, Yoshida T, Jonas JB, Yoshimura N, et al. Posterior Staphylomas in Pathologic Myopia Imaged by Widefield Optical Coherence Tomography. Investigative Ophthalmology & Visual Science. 2017;58(9): 3750–3758.

13. Choudhry N, Golding J, Manry MW, Rao RC. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery. Ophthalmology. 2016;123(6): 1368–1374. doi: 10.1016/j.ophtha.2016.01.045 26992837

14. Stehouwer M, Verbraak F, de Vries H, van Leeuwen T. Scanning beyond the limits of standard OCT with a Fourier domain optical coherence tomography integrated into a slit lamp: the SL SCAN-1. Eye. 2011;25(1): 97–104. doi: 10.1038/eye.2010.162 21072066

15. Mori K, Kanno J, Gehlbach PL, Yoneya S. Montage Images of Spectral-Domain Optical Coherence Tomography in Eyes with Idiopathic Macular Holes. Ophthalmology. 2012;119(12): 2600–2608. doi: 10.1016/j.ophtha.2012.06.027 22892150

16. Steidle MA, Straub J. Estimating the shape of the human eye using widefield optical coherence tomography (OCT). Proc. SPIE 10685, Biophotonics: Photonic Solutions for Better Health Care VI; 2018; 106851V. https://doi.org/10.1117/12.2306604

17. Meng W, Butterworth J, Malecaze F, Calvas P. Axial Length of Myopia: A Review of Current Research. Ophthalmologica. 2011;225(3): 127–134. doi: 10.1159/000317072 20948239

18. Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CMG, Saw S-M, Verhoeven VJM, et al. International Photographic Classification and Grading System for Myopic Maculopathy. American Journal of Ophthalmology. 2015;159(5): 877–883. doi: 10.1016/j.ajo.2015.01.022 25634530

19. Pappuru RR, Briceno C, Ouyang Y, Walsh AC, Sadda SR. Clinical significance of B-scan averaging with SD-OCT. Ophthalmic Surgery, Lasers and Imaging Retina. 2012;43(1): 63–68.

20. Baggio DL. LiveWire plugin. Accessed 6 February 2017. http://imagejdocu.tudor.lu/doku.php?id=plugin:segmentation:livewire_plugin:start.

21. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9(7): 676–682. doi: 10.1038/nmeth.2019 22743772

22. MATLAB. Natick,Massachusets: The Mathworks Inc.; 2018b.

23. Lujan BJ, Roorda A, Knighton RW, Carroll J. Revealing Henle's fiber layer using spectral domain optical coherence tomography. Investigative ophthalmology & visual science. 2011;52(3): 1486–1492.

24. Podoleanu A, Charalambous I, Plesea L, Dogariu A, Rosen R. Correction of distortions in optical coherence tomography imaging of the eye. Physics in medicine and biology. 2004;49(7): 1277. doi: 10.1088/0031-9155/49/7/015 15128205

25. McNabb RP, Liu A, Gospe S, El-Dairi M, James C, Vann R, et al. True retinal topography: quantitative curvature maps of the retina using OCT. Investigative Ophthalmology & Visual Science. 2019;60(9): 1548.

26. Bumstead J, Steidle M, Leahy C, Straub J. Repeatability of retinal curvature estimation on wide field OCT systems. Investigative Ophthalmology & Visual Science. 2019;60(11): PB034.

27. Ellabban AA, Tsujikawa A, Matsumoto A, Yamashiro K, Oishi A, Ooto S, et al. Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography. American journal of ophthalmology. 2013;155(2): 320–328. doi: 10.1016/j.ajo.2012.08.007 23127750


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň