Chlamydiaceae in wild, feral and domestic pigeons in Switzerland and insight into population dynamics by Chlamydia psittaci multilocus sequence typing

Autoři: Prisca Mattmann aff001;  Hanna Marti aff003;  Nicole Borel aff003;  Martina Jelocnik aff004;  Sarah Albini aff001;  Barbara Renate Vogler aff001
Působiště autorů: National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland aff001;  Swiss Ornithological Institute, Sempach, Switzerland aff002;  Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland aff003;  Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Australia aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0226088


Feral pigeons, common wood pigeons and Eurasian collared doves are the most common representatives of the Columbidae family in Switzerland and are mostly present in highly populated, urban areas. Pigeons may carry various members of the obligate intracellular Chlamydiaceae family, particularly Chlamydia (C.) psittaci, a known zoonotic agent, and C. avium. The objective of the study was to identify the infection rates of common free-roaming pigeons for different Chlamydia species with the overall aim to assess the risk pigeons pose to public health. In this study, 431 pigeons (323 feral pigeons, 34 domestic pigeons, 39 Eurasian collared doves, 35 common wood pigeons) from several geographic locations in Switzerland were investigated for the presence of Chlamydiaceae. Samples consisted of pooled choanal-cloacal swabs (n = 174), liver samples (n = 52), and paired swab and liver samples from 205 pigeons (n = 410). All 636 samples were screened using a Chlamydiaceae family-specific 23S rRNA real-time PCR (qPCR). Subsequent species identification was performed by DNA-microarray assay, sequencing of a 16S rRNA gene fragment and a C. psittaci specific qPCR. In total, 73 of the 431 pigeons tested positive for Chlamydiaceae, of which 68 were positive for C. psittaci, four were C. avium-positive and one pigeon was co-infected with C. avium and C. psittaci. The highest infection rates were detected in feral (64/323) and domestic pigeons (5/34). Common wood pigeons (2/35) and Eurasian collared doves (2/39) revealed lower infection rates. Additionally, multilocus sequence typing of twelve selected C. psittaci-positive samples revealed closely related sequence types (ST) between and within different Swiss cities. Furthermore, liver and corresponding swab samples from the same bird were colonized by the same ST. Considering the high infection rates of C. psittaci in domestic and feral pigeons, close or frequent contact to these birds poses a human health risk.

Klíčová slova:

Birds – Domestic animals – Chlamydia – Chlamydia infection – Chlamydophila psittaci – Polymerase chain reaction – Ribosomal RNA – Pigeons


1. Vorimore F, Hsia R-C, Huot-Creasy H, Bastian S, Deruyter L, Passet A, et al. Isolation of a New Chlamydia species from the Feral Sacred Ibis (Threskiornis aethiopicus): Chlamydia ibidis. PLoS ONE. 2013;8:e74823. doi: 10.1371/journal.pone.0074823 24073223

2. Taylor-Brown A, Rüegg S, Polkinghorne A, Borel N. Characterisation of Chlamydia pneumoniae and other novel chlamydial infections in captive snakes. Vet Microbiol. 2015;178:88–93. doi: 10.1016/j.vetmic.2015.04.021 25944652

3. Taylor-Brown A, Bachmann NL, Borel N, Polkinghorne A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics. 2016;17:710. doi: 10.1186/s12864-016-3055-x 27595750

4. Kaleta EF, Taday EMA. Avian host range of Chlamydophila spp. based on isolation, antigen detection and serology. Avian Pathol. 2003;32:435–61. doi: 10.1080/03079450310001593613 14522700

5. Shewen PE. Chlamydial infection in animals: a review. Can Vet J. 1980;21:2–11. 6988075

6. Harkinezhad T, Geens T, Vanrompay D. Chlamydophila psittaci infections in birds: a review with emphasis on zoonotic consequences. Vet Microbiol. 2009;135:68–77. doi: 10.1016/j.vetmic.2008.09.046 19054633

7. Vanrompay D, Harkinezhad T, van de Walle M, Beeckman D, van Droogenbroeck C, Verminnen K, et al. Chlamydophila psittaci transmission from pet birds to humans. Emerging Infect Dis. 2007;13:1108–10. doi: 10.3201/eid1307.070074 18214194

8. Vanrompay D, Butaye P, Sayada C, Ducatelle R, Haesebrouck F. Characterization of avian Chlamydia psittaci strains using omp1 restriction mapping and serovar-specific monoclonal antibodies. Research in Microbiology. 1997;148:327–33. doi: 10.1016/S0923-2508(97)81588-4 9765811

9. Geens T, Desplanques A, van Loock M, Bönner BM, Kaleta EF, Magnino S, et al. Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method. J Clin Microbiol. 2005;43:2456–61. doi: 10.1128/JCM.43.5.2456-2461.2005 15872282

10. Andersen AA. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J Clin Microbiol. 1991;29:707–11. 1890172

11. Andersen AA. Two new serovars of Chlamydia psittaci from North American birds. J Vet Diagn Invest. 1997;9:159–64. doi: 10.1177/104063879700900209 9211235

12. Rehn M, Ringberg H, Runehagen A, Herrmann B, Olsen B, Petersson AC, et al. Unusual increase of psittacosis in southern Sweden linked to wild bird exposure, January to April 2013. Euro Surveill. 2013;18:20478.

13. Read TD, Joseph SJ, Didelot X, Liang B, Patel L, Dean D. Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. MBio 2013. doi: 10.1128/mBio.00604-12 23532978

14. Wallensten A, Fredlund H, Runehagen A. Multiple human-to-human transmission from a severe case of psittacosis, Sweden, January-February 2013. Euro Surveill. 2014;19.

15. Cadario ME, Frutos MC, Arias MB, Origlia JA, Zelaya V, Madariaga MJ, et al. Epidemiological and molecular characteristics of Chlamydia psittaci from 8 human cases of psittacosis and 4 related birds in Argentina. Rev Argent Microbiol. 2017;49:323–7. doi: 10.1016/j.ram.2017.04.001 28734713

16. Sachse K, Laroucau K, Riege K, Wehner S, Dilcher M, Creasy HH, et al. Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst Appl Microbiol. 2014;37:79–88. doi: 10.1016/j.syapm.2013.12.004 24461712

17. Szymańska-Czerwińska M, Mitura A, Niemczuk K, Zaręba K, Jodełko A, Pluta A, et al. Dissemination and genetic diversity of chlamydial agents in Polish wildfowl: Isolation and molecular characterisation of avian Chlamydia abortus strains. PLoS ONE. 2017;12:e0174599. doi: 10.1371/journal.pone.0174599 28350846

18. Burt SA, Röring RE, Heijne M. Chlamydia psittaci and C. avium in feral pigeon (Columba livia domestica) droppings in two cities in the Netherlands. Vet Q. 2018;38:63–6. doi: 10.1080/01652176.2018.1482028 29806552

19. Sachse K, Kuehlewind S, Ruettger A, Schubert E, Rohde G. More than classical Chlamydia psittaci in urban pigeons. Vet Microbiol. 2012;157:476–80. doi: 10.1016/j.vetmic.2012.01.002 22296995

20. Haag-Wackernagel D. Human diseases caused by feral pigeons. In: Feare CJ, Cowan DP (eds) Advances in vertebrated pest management. p. 31–58.

21. Zweifel D, Hoop R, Sachse K, Pospischil A, Borel N. Prevalence of Chlamydophila psittaci in wild birds-potential risk for domestic poultry, pet birds, and public health? Eur. J. Wildl. Res. 2009;55:575–81.

22. Geigenfeind I, Vanrompay D, Haag-Wackernagel D. Prevalence of Chlamydia psittaci in the feral pigeon population of Basel, Switzerland. J Med Microbiol. 2012;61:261–5. doi: 10.1099/jmm.0.034025-0 21921110

23. Magnino S, Haag-Wackernagel D, Geigenfeind I, Helmecke S, Dovc A, Prukner-Radovcić E, et al. Chlamydial infections in feral pigeons in Europe: Review of data and focus on public health implications. Vet Microbiol. 2009;135:54–67. doi: 10.1016/j.vetmic.2008.09.045 18977610

24. Dinetti M, Gallo-Orsi U. Colombi e storni in città: Manuale pratico di gestione. Milano: Il verde; 1998.

25. Knaus P. Schweizer Brutvogelatlas 2013–2016; 2018.

26. Haag-Wackernagel D. Tauben in der Stadt. 2016.

27. Keller M. Projekt "Stadttauben Luzern" 2001–2006. 2007. Accessible at

28. Stadt Luzern U. Zahlen und Fakten: Die Tauben von Luzern. 2015.

29. Stadt Zürich. Tauben. 2019.

30. Sachse K, Laroucau K, Hotzel H, Schubert E, Ehricht R, Slickers P. Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes. BMC Microbiol. 2008;8:63. doi: 10.1186/1471-2180-8-63 18419800

31. Pannekoek Y, Dickx V, Beeckman DSA, Jolley KA, Keijzers WC, Vretou E, et al. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PLoS ONE. 2010;5:e14179. doi: 10.1371/journal.pone.0014179 21152037

32. Ehricht R, Slickers P, Goellner S, Hotzel H, Sachse K. Optimized DNA microarray assay allows detection and genotyping of single PCR-amplifiable target copies. Mol Cell Probes. 2006;20:60–3. doi: 10.1016/j.mcp.2005.09.003 16330186

33. Hoffmann B, Depner K, Schirrmeier H, Beer M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J Virol Methods. 2006;136:200–9. doi: 10.1016/j.jviromet.2006.05.020 16806503

34. Borel N, Kempf E, Hotzel H, Schubert E, Torgerson P, Slickers P, et al. Direct identification of chlamydiae from clinical samples using a DNA microarray assay: a validation study. Mol Cell Probes. 2008;22:55–64. doi: 10.1016/j.mcp.2007.06.003 17714911

35. Pospischil A, Kaiser C, Hofmann-Lehmann R, Lutz H, Hilbe M, Vaughan L, Borel N. Evidence for Chlamydia in wild mammals of the Serengeti. J Wildl Dis. 2012;48:1074–8. doi: 10.7589/2011-10-298 23060512

36. Pantchev A, Sting R, Bauerfeind R, Tyczka J, Sachse K. New real-time PCR tests for species-specific detection of Chlamydophila psittaci and Chlamydophila abortus from tissue samples. Vet J. 2009;181:145–50. doi: 10.1016/j.tvjl.2008.02.025 18413292

37. Blumer S, Greub G, Waldvogel A, Hässig M, Thoma R, Tschuor A, et al. Waddlia, Parachlamydia and Chlamydiaceae in bovine abortion. Vet Microbiol. 2011;152:385–93. doi: 10.1016/j.vetmic.2011.05.024 21658867

38. Staub E, Marti H, Biondi R, Levi A, Donati M, Leonard CA, et al. Novel Chlamydia species isolated from snakes are temperature-sensitive and exhibit decreased susceptibility to azithromycin. Sci Rep. 2018;8:5660. doi: 10.1038/s41598-018-23897-z 29618824

39. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. doi: 10.1093/bioinformatics/bts199 22543367

40. Dolz G, Solórzano-Morales Á, Angelova L, Tien C, Fonseca L, Bonilla MC. Chlamydia psittaci genotype B in a pigeon (Columba livia) inhabiting a public place in San José, Costa Rica. Open Vet J. 2013;3:135–9. 26623327

41. Sariya L, Prompiram P, Tangsudjai S, Poltep K, Chamsai T, Mongkolphan C, et al. Detection and characterization of Chlamydophila psittaci in asymptomatic feral pigeons (Columba livia domestica) in central Thailand. Asian Pac J Trop Med. 2015;8:94–7. doi: 10.1016/S1995-7645(14)60195-4 25902021

42. Wang X, Zhang N-Z, Ma C-F, Zhang X-X, Zhao Q, Ni H-B. Epidemiological Investigation and Genotype of Chlamydia Exposure in Pigeons in Three Provinces in Northern China. Vector Borne Zoonotic Dis. 2018;18:181–4. doi: 10.1089/vbz.2017.2214 29350589

43. Giunchi D, V. Y, Emilio N, Vanni L, Soldatini C. Feral Pigeons: Problems, Dynamics and Control Methods. In: Soloneski S, editor. Integrated Pest Management and Pest Control—Current and Future Tactics: InTech; 2012. doi: 10.5772/31536

44. Sol D, Senar JC. Urban pigeon populations: stability, home range, and the effect of removing individuals. Can. J. 1995;73:1154–60.

45. Čechová L, Halánová M, Kalinová Z, Čisláková L, Halán M, Valenčáková A. Detection of Chlamydia psittaci in feral pigeons (Columba livia domestica) in Slovakia and their characterisation. Ann Agric Environ Med. 2016;23:75–8. doi: 10.5604/12321966.1196856 27007521

46. Dovč A, Jereb G, Krapež U, Gregurić-Gračner G, Pintarič Š, Slavec B, et al. Occurrence of Bacterial and Viral Pathogens in Common and Noninvasive Diagnostic Sampling from Parrots and Racing Pigeons in Slovenia. Avian Dis. 2016;60:487–92. doi: 10.1637/11373-011116-Reg 27309292

47. Teske L, Ryll M, Rubbenstroth D, Hänel I, Hartmann M, Kreienbrock L, Rautenschlein S. Epidemiological investigations on the possible risk of distribution of zoonotic bacteria through apparently healthy homing pigeons. Avian Pathol. 2013;42:397–407. doi: 10.1080/03079457.2013.822468 23930968

48. Donati M, Laroucau K, Delogu M, Vorimore F, Aaziz R, Cremonini E, et al. Chlamydia psittaci in Eurasian Collared Doves (Streptopelia decaocto) in Italy. J Wildl Dis. 2015;51:214–7. doi: 10.7589/2014-01-010 25375950

49. Sharples E, Baines SJ. Prevalence of Chlamydophila psittaci-positive cloacal PCR tests in wild avian casualties in the UK. Vet Rec. 2009;164:16–7. doi: 10.1136/vr.164.1.16 19122217

50. Szymańska-Czerwińska M, Niemczuk K. Avian Chlamydiosis Zoonotic Disease. Vector Borne Zoonotic Dis. 2016;16:1–3. doi: 10.1089/vbz.2015.1839 26741325

51. Dickx V, Kalmar ID, Tavernier P, Vanrompay D. Prevalence and genotype distribution of Chlamydia psittaci in feral Canada geese (Branta canadensis) in Belgium. Vector Borne Zoonotic Dis. 2013;13:382–4. doi: 10.1089/vbz.2012.1131 23654298

52. van Loock M, Geens T, de Smit L, Nauwynck H, van Empel P, Naylor C, et al. Key role of Chlamydophila psittaci on Belgian turkey farms in association with other respiratory pathogens. Vet Microbiol. 2005;107:91–101. doi: 10.1016/j.vetmic.2005.01.009 15795081

53. Jeong J, An I, Oem J-K, Wang S-J, Kim Y, Shin J-H, et al. Molecular prevalence and genotyping of Chlamydia spp. in wild birds from South Korea. J Vet Med Sci. 2017;79:1204–9. doi: 10.1292/jvms.16-0516 28579580

54. Beckmann KM, Borel N, Pocknell AM, Dagleish MP, Sachse K, John SK, et al. Chlamydiosis in British Garden Birds (2005–2011): retrospective diagnosis and Chlamydia psittaci genotype determination. Ecohealth. 2014;11:544–63. doi: 10.1007/s10393-014-0951-x 24947738

55. Takahashi T, Takashima I, Hashimoto N. Shedding and transmission of Chlamydia psittaci in experimentally infected chickens. Avian Dis. 1988;32:650–8. 3060085

56. West A. A Brief Review of Chlamydophila psittaci in Birds and Humans. J Exot Pet Med. 2011;20:18–20.

57. Branley J, Bachmann NL, Jelocnik M, Myers GSA, Polkinghorne A. Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Sci Rep. 2016;6:30019. doi: 10.1038/srep30019 27488134

58. de Boeck C, Dehollogne C, Dumont A, Spierenburg M, Heijne M, Gyssens I, et al. Managing a cluster outbreak of psittacosis in Belgium linked to a pet shop visit in The Netherlands. Epidemiol Infect. 2016;144:1710–6. doi: 10.1017/S0950268815003106 26669637

59. Harkinezhad T, Verminnen K, de Buyzere M, Rietzschel E, Bekaert S, Vanrompay D. Prevalence of Chlamydophila psittaci infections in a human population in contact with domestic and companion birds. J Med Microbiol. 2009;58:1207–12. doi: 10.1099/jmm.0.011379-0 19528151

Článok vyšiel v časopise


2019 Číslo 12