ABO blood group and risk of newly diagnosed nonalcoholic fatty liver disease: A case-control study in Han Chinese population


Autoři: Guo-Chao Zhong aff001;  Shan Liu aff002;  Yi-Lin Wu aff003;  Mei Xia aff003;  Jin-Xian Zhu aff003;  Fa-Bao Hao aff004;  Lun Wan aff005
Působiště autorů: Graduate School, Chongqing Medical University, Chongqing, China aff001;  Department of Pediatrics, the People’s Hospital of Dazu District, Chongqing, China aff002;  Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China aff003;  Pediatric Surgery Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China aff004;  Department of Hepatobiliary Surgery, the People’s Hospital of Dazu District, Chongqing, China aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225792

Souhrn

Background

ABO blood group has been associated with cardiovascular disease and cancer. However, whether ABO blood group is associated with nonalcoholic fatty liver disease (NAFLD) remains unknown. The present study aimed to clarify this issue.

Methods

A hospital-based case-control study was performed in southwestern China. A total of 583 newly ultrasound-diagnosed NAFLD cases and 2068 controls were included. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of developing NAFLD were calculated by multivariate logistic regression. A propensity score was developed for adjustment and matching.

Results

The proportions of blood groups A, B, AB and O were 31%, 26%, 8% and 35%, respectively. Non-O blood groups were found to be significantly associated with an increased risk of NAFLD (the fully adjusted OR = 1.51, 95% CI: 1.19, 1.91); moreover, compared with blood group O, the fully adjusted ORs of developing NAFLD were 1.50 (95% CI: 1.13, 1.99) for blood group A, 1.59 (95% CI: 1.19, 2.14) for blood group B, and 1.37 (95% CI: 0.86, 2.18) for blood group AB. Similar results were obtained in both propensity-score-adjusted and propensity-score-matched analyses. No evidence of significant effect modification for the association of ABO blood group with the risk of NAFLD was found (all Pinteraction>0.05).

Conclusions

Non-O blood groups are significantly associated with an increased risk of NAFLD. Our findings provide some epidemiological evidence for a possible role of ABO glycosyltransferase in the pathogenesis of NAFLD. However, these findings need to be validated by future studies.

Klíčová slova:

Alcohol consumption – Blood groups – Coronary heart disease – Fatty liver – Hypertension – Cholesterol – Ultrasound imaging


Zdroje

1. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. doi: 10.1002/hep.29367 28714183.

2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi: 10.1002/hep.28431 26707365.

3. Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes care. 2018;41(2):372–82. doi: 10.2337/dc17-1902 29358469.

4. Mantovani A, Zaza G, Byrne CD, Lonardo A, Zoppini G, Bonora E, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64–76. doi: 10.1016/j.metabol.2017.11.003 29137912.

5. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol. 2016;65(3):589–600. doi: 10.1016/j.jhep.2016.05.013 27212244.

6. Franchini M, Liumbruno GM. ABO blood group: old dogma, new perspectives. Clin Chem Lab Med. 2013;51(8):1545–53. doi: 10.1515/cclm-2013-0168 23648637.

7. Zakai NA, Judd SE, Alexander K, McClure LA, Kissela BM, Howard G, et al. ABO blood type and stroke risk: the REasons for Geographic And Racial Differences in Stroke Study. J Thromb Haemost. 2014;12(4):564–70. doi: 10.1111/jth.12507 24444093.

8. V Vasan SK, Rostgaard K, Majeed A, Ullum H, Titlestad KE, Pedersen OB, et al. ABO Blood Group and Risk of Thromboembolic and Arterial Disease: A Study of 1.5 Million Blood Donors. Circulation. 2016;133(15):1449–57. doi: 10.1161/CIRCULATIONAHA.115.017563 26939588.

9. Chen Y, Chen C, Ke X, Xiong L, Shi Y, Li J, et al. Analysis of circulating cholesterol levels as a mediator of an association between ABO blood group and coronary heart disease. Circ Cardiovasc Genet. 2014;7(1):43–8. doi: 10.1161/CIRCGENETICS.113.000299 24395926.

10. Franchini M, Mengoli C, Capuzzo E, Terenziani I, Bonfanti C, Lippi G. Correlation between ABO Blood Group, and Conventional Hematological and Metabolic Parameters in Blood Donors. Semin Thromb Hemost. 2016;42:75–86. doi: 10.1055/s-0035-1564843 26595152.

11. Kim NH, Jung YS, Hong HP, Park JH, Kim HJ, Park DI, et al. Association between cotinine-verified smoking status and risk of nonalcoholic fatty liver disease. Liver Int. 2018; 38(8):1487–1494. doi: 10.1111/liv.13701 29359396.

12. Sung KC, Ryu S, Lee JY, Kim JY, Wild SH, Byrne CD. Effect of exercise on the development of new fatty liver and the resolution of existing fatty liver. J Hepatol. 2016;65:791–7. doi: 10.1016/j.jhep.2016.05.026 27255583.

13. Fagherazzi G, Gusto G, Clavel-Chapelon F, Balkau B, Bonnet F. ABO and Rhesus blood groups and risk of type 2 diabetes: evidence from the large E3N cohort study. Diabetologia. 2015;58(3):519–22. doi: 10.1007/s00125-014-3472-9 25533388.

14. Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016;65(8):1096–108. doi: 10.1016/j.metabol.2016.01.001 26856933.

15. Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852(9):1765–78. doi: 10.1016/j.bbadis.2015.05.015 26027904.

16. Fan JG, Jia JD, Li YM, Wang BY, Lu LG, Shi JP, et al. Guidelines for the diagnosis and management of nonalcoholic fatty liver disease: update 2010. J Dig Dis. 2011;12(1):38–44. doi: 10.1111/j.1751-2980.2010.00476.x 21276207.

17. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S 9686693.

18. Rose GA, Blackburn H, Gillum RF. Cardiovascular survey methods (Vol. 56. No. 2nd edition): Geneva, Switzerland: World Health Organization 1982.

19. Liu LS. 2010 Chinese guidelines for the management of hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2011; 39(7):579–615. 22088239.

20. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–25. doi: 10.1002/hep.21178 16729309.

21. Medical Administration Department of Ministry of Public Health, China. National guide to clinical laboratory procedures. 3rd ed. Chapter 6. Nanjing: Southeast University press 2006;246–248.

22. Maldonado G, Greenland S. Simulation study of confounder-selection strategies. Am J Epidemiol. 1993;138(11):923–36. doi: 10.1093/oxfordjournals.aje.a116813 8256780.

23. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10(2):150–61. doi: 10.1002/pst.433 20925139.

24. Song J, Chen F, Campos M, Bolgiano D, Houck K, Chambless LE, et al. Quantitative Influence of ABO Blood Groups on Factor VIII and Its Ratio to von Willebrand Factor, Novel Observations from an ARIC Study of 11,673 Subjects. PLoS One. 2015;10(8):e0132626. doi: 10.1371/journal.pone.0132626 26244499.

25. Wolpin BM, Kraft P, Xu M, Steplowski E, Olsson ML, Arslan AA, et al. Variant ABO blood group alleles, secretor status, and risk of pancreatic cancer: results from the pancreatic cancer cohort consortium. Cancer Epidemiol Biomarkers Prev. 2010;19(12):3140–9. doi: 10.1158/1055-9965.EPI-10-0751 20971884

26. Yamamoto F, McNeill PD, Hakomori S. Human histo-blood group A2 transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem Biophys Res Commun. 1992;187(1):366–74. doi: 10.1016/s0006-291x(05)81502-5 1520322.

27. Liu J, Zhang S, Liu M, Wang Q, Shen H, Zhang Y. Distribution of ABO/Rh blood groups and their association with hepatitis B virus infection in 3.8 million Chinese adults: A population-based cross-sectional study. J Viral Hepat. 2018;25(4):401–11. doi: 10.1111/jvh.12829 29193618.

28. Garratty G, Glynn SA, McEntire R. ABO and Rh(D) phenotype frequencies of different racial/ethnic groups in the United States. Transfusion. 2004;44(5):703–6. doi: 10.1111/j.1537-2995.2004.03338.x 15104651.

29. Hentschke MR, Caruso FB, Paula LG et al. Is there any relationship between ABO/Rh blood group and patients with pre-eclampsia? Pregnancy Hypertens. 2014;4(2):170–3. doi: 10.1016/j.preghy.2014.03.003 26104423.

30. Meo SA, Rouq FA, Suraya F, Zaidi SZ. Association of ABO and Rh blood groups with type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2016;20(2):237–42. 26875891.

31. Miao SY, Zhou W, Chen L, Wang S, Liu XA. Influence of ABO blood group and Rhesus factor on breast cancer risk: a meta-analysis of 9665 breast cancer patients and 244,768 controls. Asia Pac J Clin Oncol. 2014;10(2):101–8. doi: 10.1111/ajco.12083 23714093.

32. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185–98. doi: 10.1016/j.cmet.2006.07.006 16950136.

33. Van Rooyen DM, Larter CZ, Haigh WG, Yeh MM, Ioannou G, Kuver R, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011;141(4):1393–403. doi: 10.1053/j.gastro.2011.06.040 21703998.

34. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol. 2009;50(4):789–96. doi: 10.1016/j.jhep.2008.12.016 19231010.

35. Zelber-Sagi S, Salomone F, Yeshua H, Lotan R, Webb M, Halpern Z, et al. Non-high-density lipoprotein cholesterol independently predicts new onset of non-alcoholic fatty liver disease. Liver In. 2014;34(6):e128–35. doi: 10.1111/liv.12318 24118857.

36. Jenkins PV, O'Donnell JS. ABO blood group determines plasma von Willebrand factor levels: a biologic function after all? Transfusion. 2006;46(10):1836–44. doi: 10.1111/j.1537-2995.2006.00975.x 17002642.

37. Souto JC, Almasy L, Muniz-Diaz E, Soria JM, Borrell M, Bayen L, et al. Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol. 2000;20(8):2024–8. doi: 10.1161/01.atv.20.8.2024 10938027.

38. Matsui T, Titani K, Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem. 1992;267(13):8723–31. 1577715.

39. Targher G, Bertolini L, Scala L, Zoppini G, Zenari L, Falezza G. Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22(10):1354–8. doi: 10.1111/j.1464-5491.2005.01646.x 16176196.

40. Verrijken A, Francque S, Mertens I, Prawitt J, Caron S, Hubens G, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014;59(1):121–9. doi: 10.1002/hep.26510 24375485.

41. Melzer D, Perry JR, Hernandez D, Corsi AM, Stevens K, Rafferty I, et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 2008;4(5):e1000072. doi: 10.1371/journal.pgen.1000072 18464913.

42. Seo YY, Cho YK, Bae JC, Seo MH, Park SE, Rhee EJ, et al. Tumor Necrosis Factor-alpha as a Predictor for the Development of Nonalcoholic Fatty Liver Disease: A 4-Year Follow-Up Study. Endocrinol Metab. 2013;28(1):41–5. doi: 10.3803/EnM.2013.28.1.41 24396649

43. Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011;54(3):1082–90. doi: 10.1002/hep.24452 21618575.

44. Grimes DA, Schulz KF. Compared to what? Finding controls for case-control studies. Lancet. 2005;365(9468):1429–33. doi: 10.1016/S0140-6736(05)66379-9 15836892


Článok vyšiel v časopise

PLOS One


2019 Číslo 12