Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution
Autoři:
Barbara van Asch aff001; William F. Versfeld aff001; Kelvin L. Hull aff001; Alison J. Leslie aff002; Timoteus I. Matheus aff003; Petrus C. Beytell aff003; Pierre du Preez aff003; Ruhan Slabbert aff001; Clint Rhode aff001
Působiště autorů:
Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, South Africa
aff001; Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, South Africa
aff002; Directorate of Scientific Services, Department of Natural Resources Management, Ministry of Environment & Tourism, Private Bag 13306, Windhoek, Namibia
aff003; Department of Ancient Studies, Stellenbosch University, Private Bag X1, Matieland, South Africa
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226505
Souhrn
Nile crocodiles are apex predators widely distributed in sub-Saharan Africa that have been viewed and managed as a single species. A complex picture of broad and fine-scale phylogeographic patterns that includes the recognition of two species (Crocodylus niloticus and Crocodylus suchus), and the structuring of populations according to river basins has started to emerge. However, previous studies surveyed a limited number of samples and geographical regions, and large areas of the continent remained unstudied. This work aimed at a fine scale portrait of Nile crocodile populations at the fringes of their geographic distribution in southern Africa. Wild and captive individuals were sampled across four major river systems (Okavango, Lower Kunene, Lower Shire and Limpopo) and the KwaZulu-Natal region. A multi-marker approach was used to infer phylogeographic and genetic diversity patterns, including new and public mitochondrial data, and a panel of 11 nuclear microsatellites. All individuals belonged to a phylogenetic clade previously associated with the C. niloticus species, thus suggesting the absence of C. suchus in southern Africa. The distribution of mitochondrial haplotypes indicated ancestral genetic connectivity across large areas, with loss of diversity along the north-south axis. Genetic variation partitioned the populations primarily into western and eastern regions of southern Africa, and secondarily into the major river systems. Populations were partitioned into five main groups corresponding to the Lower Kunene, the Okavango, the Lower Shire, and the Limpopo rivers, and the KwaZulu-Natal coastal region. All groups show evidence of recent bottlenecks and small effective population sizes. Long-term genetic diversity is likely to be compromised, raising conservation concern. These results emphasize the need for local genetic assessment of wild populations of Nile crocodiles to inform strategies for management of the species in southern Africa.
Klíčová slova:
Haplotypes – Population genetics – Africa – South Africa – Phylogeography – Lakes – Rivers – Crocodiles
Zdroje
1. Eaton MJ. Dwarf Crocodile Osteolaemus tetraspis. In: Manolis SC, Stevenson C, editors. Crocodiles: Status survey and conservation action plan; 2010; pp. 127–132.
2. Fergusson R. Nile crocodile Crocodylus niloticus. In: Manolis SC, Stevenson C, editors. Crocodiles: Status survey and conservation action plan; 2010. pp. 84–89.
3. The IUCN Red List of Threatened Species; 2017. Available from: http://www.iucnredlist.org/
4. Griffin M. Checklist and provisional national conservation status of amphibians, reptiles and mammals known, reported or expected to occur in Namibia. 2003. Available from: http://www.nnf.org.na/RARESPECIES/rare_library/documents/CHKLST.PDF
5. Marais J. 2014 Crocodylus niloticus (Laurenti, 1768). In: Bates M, Branch W, Bauer A, Burger M, Marais J, Alexander G, de Villers M, editors. Atlas and Red List of the reptiles of South Africa, Lesotho and Swaziland; 2014. pp. 87–88.
6. Fuchs KH, Mertens R, Wermuth H. Die unterarten des Nilkrokodils, Crocodylus niloticus. Salamandra. 1974; 10: 107–14.
7. Schmitz A, Mansfeld P, Hekkala E, Shine T, Nickel H, Amato G, et al. Molecular evidence for species level divergence in African Nile Crocodiles Crocodylus niloticus (Laurenti, 1786). Comptes Rendus Palevol. 2003; 2: 703–12. doi: 10.1016/j.crpv.2003.07.002
8. Hekkala E, Shirley MH, Amato G, Austin JD, Charter S, Thorbjarnarson J, et al. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol. 2011: 20: 4199–215. doi: 10.1111/j.1365-294X.2011.05245.x) 21906195
9. Meredith RW, Hekkala ER, Amato G, Gatesy J. A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: Evidence for a trans-Atlantic voyage from Africa to the New World. Mol Phylogene Evol. 2011; 60: 183–91. doi: 10.1016/j.ympev.2011.03.026 21459152
10. Oaks JR. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution. 2011; 65: 3285–3297 doi: 10.1111/j.1558-5646.2011.01373.x 22023592
11. Grigg GC, Kirshner D. Biology and evolution of crocodylians. Cornell University Press and CSIRO Publications; 2015.
12. De Smet K. Status of the Nile crocodile in the Sahara desert. Hydrobiologia. 1998; 391: 81–86. doi: 10.1023/A:1003592123079
13. Brito JC, Martínez-Freiría F, Sierra P, Sillero N, Tarroso P. Crocodiles in the Sahara desert: An update of distribution, habitats and population status for conservation planning in Mauritania. PLoS One. 2011; 6: e14734. doi: 10.1371/journal.pone.0014734 21364897
14. Velo-Antón G, Godinho R, Campos JC, Brito JC. Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African crocodiles. PLoS One. 2014; 9: e94626. doi: 10.1371/journal.pone.0094626 24740183
15. Hekkala ER, Amato G, DeSalle R, Blum MJ. Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conserv Genet. 2010; 11: 1435–43. doi: 10.1007/s10592-009-9970-5
16. Cunningham SW, Shirley MH, Hekkala ER. Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ. 2016; 4: e1901. doi: 10.7717/peerj.1901 27114867
17. Leslie AJ. The Ecology and Physiology of the Nile crocodile, Crocodylus niloticus, in Lake St. Lucia, Kwazulu-Natal, South Africa. PhD dissertation, Drexel University, 1997.
18. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS. 1984; 81: 8014–8. doi: 10.1073/pnas.81.24.8014 6096873
19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018; 35: 1547–49. doi: 10.1093/molbev/msy096 29722887
20. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res. 2010; 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x 21565059
21. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999; 16: 37–48. doi: 10.1093/oxfordjournals.molbev.a026036 10331250
22. FitzSimmons N, Tanksley S, Forstner M, Louis E, Daglish R, Gratten J, et al. Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Surrey Beatty & Sons. Crocodilian biology and evolution. 2001; pp. 51–57.
23. Miles LG, Isberg SR, Moran C, Hagen C, Glenn TC. 253 Novel polymorphic microsatellites for the saltwater crocodile (Crocodylus porosus). Conserv Genet. 2009; 10: 963–80. doi: 10.1007/s10592-008-9600-7
24. Miles LG, Lance SL, Isberg SR, Moran C, Glenn TC. Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future. Conserv Genet. 2009; 10: 935–54. doi: 10.1007/s10592-008-9601-6
25. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004; 4: 535–538. doi: 10.1111/j.1471-8286.2004.00684.x
26. Peakall R, Smouse P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics. 2012; 1: 6–8. doi: 10.1093/bioinformatics/bts460 22820204
27. Kalinowski ST. hp‐rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes. 2005; 5:187–9.
28. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155: 945–59. (PMC1461096) 10835412
29. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol. 2005; 14: 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x 15969739
30. Puechmaille S J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol Ecol Resour. 2016 16, 608–627. doi: 10.1111/1755-0998.12512 26856252
31. Li Y-L, Liu J-X. StructureSelector: a web based software to select and visualize the optimal number of clusters by using multiple methods. Mol Ecol Resour. 2018; 18:176–177. doi: 10.1111/1755-0998.12719 28921901
32. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015; 15: 1179–1191. doi: 10.1111/1755-0998.12387 25684545
33. Queller DC, Goodnight KF. Estimating relatedness using genetic markers. Evolution. 1989; 43: 258. doi: 10.1111/j.1558-5646.1989.tb04226.x 28568555
34. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res. 2014; 14: 209–214. doi: 10.1111/1755-0998.12157 23992227
35. Piry S, Luikart G, Cornuet J-M. BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. J Hered. 1999; 90: 502–3. doi: 10.1093/jhered/90.4.502
36. Beerli P. Migrate documentation. School of Computational Science and Department of Biological Science. Florida State University, Tallahassee, FL. 2004.
37. Shirley MH, Vliet K, Carr AN, Austin JD. Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc Ser B-Biol. 2014; 281: 20132483. doi: 10.1098/rspb.2013.2483 24335982
38. Johnson TC, Kelts KR, Odada EO. The Holocene History of Lake Victoria. Ambio. 2000; 29: 2–11. (http://www.jstor.org/stable/4314987)
39. Campbell HA, Dwyer RG, Irwin TR, Franklin CE. Home range utilisation and long-range movement of estuarine crocodiles during the breeding and nesting season. PLoS One. 2103; 8: e62127. doi: 10.1371/journal.pone.0062127
40. Moore AE, Cotterill FPD, Main MPL, Williams HB. The Zambezi River. In: Gupta A, editor. Large Rivers: Geomorphology and Management. John Wiley & Sons; 2007 pp. 311–332. doi: 10.1002/9780470723722.ch15
41. Hipondoka M. The development and evolution of Etosha Pan, Namibia. PhD dissertation, University of Wurzburg, Germany; 2005. Available from: https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/index/index/docId/1195
42. Hipondoka MHT, Jousse H, Kempf J, Busche D. Fossil evidence for perennial lake conditions during the Holocene at Etosha Pan, Namibia. S Afr J Sci. 2006; 102: 93–5. (http://hdl.handle.net/10520/EJC96534)
43. Pickford M, Senut B. Namibia Palaeontology Expedition 16th April to 28th May, field report, Grillental Carrière fossil locality. 2007; pp. 1–31.
44. Skelton P. The Fishes of the Okavango drainage system in Angola, South West Africa and Botswana: taxonomy and distribution. Ichthyological Bulletin of the J. L. B. Smith Institute of Ichthyology 50; 1985.
45. Mendelsohn J, Jarvis A, Robertson T. A Profile and Atlas of the Cuvelai-Etosha Basin. Windhoek, Namibia: RAISON–Gondwana; 2013. (ISBN 9789991678078)
46. Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution. 1975; 29: 1–10. doi: 10.1111/j.1558-5646.1975.tb00807.x 28563291
47. Smith R, Eriksson PG, Botha W. A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of South Africa. J Afr Earth Sci. 1993; 16: 143–169.
48. Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies–Response to climate evolution and sedimentary environment. Palaeogeogr Palaeocl. 2006; 240: 184–203.
49. Coulter GW, Allanson BR, Bruton MN, Greenwood PH, Hart RC, Jackson PBN, et al. Unique qualities and special problems of the African Great Lakes. Environ Biol Fish. 1986; 17: 161–183. doi: 10.1007/BF00698196
50. Coulter GW, Tiercelin JJ. Lake Tanganyika and its life. British Natural History Museum Publications, Oxford University Press, 1991.
51. Lowe-McConnell RH. Fish faunas of the African Great Lakes: origins, diversity, and vulnerability. Conserv. Biol. 1993; 7: 634–43. doi: 10.1046/j.1523-1739.1993.07030634.x
52. Seehausen O, Koetsier E, Schneider MV, Chapman LJ, Chapman CA, Knight ME, et al. Nuclear markers reveal unexpected genetic variation and a Congolese-Nilotic origin of the Lake Victoria cichlid species flock. Proc R Soc Ser B-Biol. 2003; 270: 129–137. doi: 10.1098/rspb.2002.2153 12590750
53. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science. 2014; 346: 1254449 doi: 10.1126/science.1254449 25504731
54. Glenn TC, Staton JL, Vu AT, Davis LM, Alvarado Bremer JR, Rhodes WE, et al. Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. J Exp Zool. 2002; 294: 312–324. doi: 10.1002/jez.10206 12461811
55. Ross J. Crocodiles: an action plan for their conservation. 2nd ed. IUCNISSC Crocodile Specialist Group. IUCN, 1998. pp. 1–5. Available from: https://portals.iucn.org/library/node/6002
56. Bishop JM, Leslie AJ, Bourquin SL, O’Ryan C. Reduced effective population size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biol Conserv. 2009; 142: 2335–2341. doi: 10.1016/j.biocon.2009.05.016
57. Lyet A, Slabbert R, Versfeld WF, Leslie AJ, Beytell PC, Du Preez P. Using binomial mixture model and aerial counts for accurate estimate of Nile crocodile abundance and population size in the Kunene River, Namibia. Afr J Wildl Res. 2016; 46: 71–86. doi: 10.3957/056.046.0071
58. Bourquin SL. The population ecology of the Nile crocodile (Crocodylus niloticus) in the panhandle region of the Okavango Delta, Botswana. PhD dissertation, Stellenbosch University, South Africa. 2008. Available from: http://hdl.handle.net/10019.1/1281
59. Franklin IR, Frankham R. How large must populations be to retain evolutionary potential? Anim Conserv. 1998; 1: 60–70. doi: 10.1111/j.1469-1795.1998.tb00228.x
60. Frankham R, Bradshaw CJA, BW. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv. 2014; 170: 56–63. doi: 10.1016/j.biocon.2013.12.036)
61. Waples RS, Do C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl. 2009; 9: 244–262.
62. Rhode C, Maduna SN, Roodt-Wilding R, Bester-Van Der Merwe AE. Comparison of population genetic estimates amongst wild, F1 and F2 cultured abalone (Haliotis midae). Anim Genet. 2014; 45: 456–459. doi: 10.1111/age.12142 24617992
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- 100 let s metamizolem: jaké je jeho současné postavení v léčbě bolesti
- Masturbační chování žen v ČR − dotazníková studie