First-4-week erythrocyte sedimentation rate variability predicts erythrocyte sedimentation rate trajectories and clinical course among patients with pyogenic vertebral osteomyelitis

Autoři: Hsiu-Yin Chiang aff001;  Chih-Wei Chung aff001;  Chin-Chi Kuo aff001;  Yen-Chun Lo aff001;  Wei-Shuo Chang aff003;  Chih-Yu Chi aff004
Působiště autorů: Big Data Center, China Medical University Hospital, Taichung, Taiwan aff001;  Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan aff002;  Division of Infectious Diseases, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan aff003;  Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan aff004;  School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225969



The trajectory pattern of erythrocyte sedimentation rate (ESR) in patients with pyogenic vertebral osteomyelitis (PVO) and its clinical significance is unclear. We further evaluated whether the first-4-week ESR variability can predict the trajectory pattern, treatment duration and recurrence of PVO.


The longitudinal ESR patterns of adults with PVO within the first 6 months were characterized through group-based trajectory modeling (GBTM). The ESR variability within the first 4 weeks was defined using the absolute difference (AD), coefficient of variation, percent change, and slope change. The first-4-week ESR variabilities were analyzed using ordinal logistic regression to predict the 6-month ESR trajectory and using logistic regression to predict treatment duration and recurrence likelihood. The discrimination and calibration of the prediction models were evaluated.


Three ESR trajectory patterns were identified though GBTM among patients with PVO: Group 1, initial moderate high ESR with fast response; Group 2, initial high ESR with fast response; Group 3, initial high ESR with slow response. Group 3 patients (initial high ESR with slow response) were older, received longer antibiotic treatment, and had more comorbidities and higher recurrence rates than patients in the other two groups. The initial ESR value and ESR − AD could predict the 6-month ESR trajectory. By incorporating the first-4-week ESR variabilities and the clinical features of patients, our models exhibited moderate discrimination performance to predict prolonged treatment (≥12 weeks; C statistic, 0.75; 95% confidence interval [CI], 0.70 to 0.81) and recurrence (C statistic, 0.69; 95% CI, 0.61 to 0.78).


The initial ESR value and first-4-week ESR variability are useful markers to predict the treatment duration and recurrence of PVO. Future studies should validate our findings in other populations.

Klíčová slova:

Antibiotics – Chronic kidney disease – Osteomyelitis – Red blood cells – Sedimentation – Surgical and invasive medical procedures – Abscesses


1. Zimmerli W. Clinical practice. Vertebral osteomyelitis. The New England journal of medicine. 2010;362(11):1022–9. Epub 2010/03/20. doi: 10.1056/NEJMcp0910753 20237348.

2. Berbari EF, Kanj SS, Kowalski TJ, Darouiche RO, Widmer AF, Schmitt SK, et al. 2015 Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for the Diagnosis and Treatment of Native Vertebral Osteomyelitis in Adults. Clin Infect Dis. 2015;61(6):e26–46. doi: 10.1093/cid/civ482 26229122.

3. Nickerson EK, Sinha R. Vertebral osteomyelitis in adults: an update. Br Med Bull. 2016;117(1):121–38. doi: 10.1093/bmb/ldw003 26872859.

4. Lin Z, Vasudevan A, Tambyah PA. Use of erythrocyte sedimentation rate and C-reactive protein to predict osteomyelitis recurrence. J Orthop Surg (Hong Kong). 2016;24(1):77–83. doi: 10.1177/230949901602400118 27122518.

5. Brigden ML. Clinical utility of the erythrocyte sedimentation rate. Am Fam Physician. 1999;60(5):1443–50. 10524488.

6. Husain TM, Kim DH. C-reactive protein and erythrocyte sedimentation rate in orthopaedics. Univ Pennsylvania Orthop J. 2002;15:13–6.

7. Litao MK, Kamat D. Erythrocyte sedimentation rate and C-reactive protein: how best to use them in clinical practice. Pediatr Ann. 2014;43(10):417–20. doi: 10.3928/00904481-20140924-10 25290132.

8. Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ. 2016;115(6):317–21. 29094869.

9. Carragee EJ, Kim D, van der Vlugt T, Vittum D. The clinical use of erythrocyte sedimentation rate in pyogenic vertebral osteomyelitis. Spine (Phila Pa 1976). 1997;22(18):2089–93. doi: 10.1097/00007632-199709150-00005 9322319.

10. Chang WS, Ho MW, Lin PC, Ho CM, Chou CH, Lu MC, et al. Clinical characteristics, treatments, and outcomes of hematogenous pyogenic vertebral osteomyelitis, 12-year experience from a tertiary hospital in central Taiwan. J Microbiol Immunol Infect. 2018;51(2):235–42. doi: 10.1016/j.jmii.2017.08.002 28847713.

11. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–9. Epub 2005/10/15. doi: 10.1097/01.mlr.0000182534.19832.83 16224307.

12. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839

13. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol. 2010;6:109–38. doi: 10.1146/annurev.clinpsy.121208.131413 20192788.

14. Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res. 2001;29(3):374–93.

15. Tsai CW, Chiu HT, Huang HC, Ting IW, Yeh HC, Kuo CC. Uric acid predicts adverse outcomes in chronic kidney disease: a novel insight from trajectory analyses. Nephrol Dial Transplant. 2018;33(2):231–41. doi: 10.1093/ndt/gfx297 29140472.

16. Michail M, Jude E, Liaskos C, Karamagiolis S, Makrilakis K, Dimitroulis D, et al. The performance of serum inflammatory markers for the diagnosis and follow-up of patients with osteomyelitis. Int J Low Extrem Wounds. 2013;12(2):94–9. doi: 10.1177/1534734613486152 23667102.

17. Lee DG, Park KB, Kang DH, Hwang SH, Jung JM, Han JW. A clinical analysis of surgical treatment for spontaneous spinal infection. J Korean Neurosurg Soc. 2007;42(4):317–25. doi: 10.3340/jkns.2007.42.4.317 19096563

18. Unkila-Kallio L, Kallio MJ, Eskola J, Peltola H. Serum C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in acute hematogenous osteomyelitis of children. Pediatrics. 1994;93(1):59–62. 8265325.

19. Larsson S, Thelander U, Friberg S. C-reactive protein (CRP) levels after elective orthopedic surgery. Clin Orthop Relat Res. 1992;(275):237–42. 1735220.

20. Roine I, Faingezicht I, Arguedas A, Herrera JF, Rodriguez F. Serial serum C-reactive protein to monitor recovery from acute hematogenous osteomyelitis in children. Pediatr Infect Dis J. 1995;14(1):40–4. doi: 10.1097/00006454-199501000-00008 7715988.

21. Rabjohn L, Roberts K, Troiano M, Schoenhaus H. Diagnostic and prognostic value of erythrocyte sedimentation rate in contiguous osteomyelitis of the foot and ankle. J Foot Ankle Surg. 2007;46(4):230–7. doi: 10.1053/j.jfas.2007.03.004 17586434.

22. Paakkonen M, Kallio MJ, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468(3):861–6. doi: 10.1007/s11999-009-0936-1 19533263

23. Yoon SH, Chung SK, Kim KJ, Kim HJ, Jin YJ, Kim HB. Pyogenic vertebral osteomyelitis: identification of microorganism and laboratory markers used to predict clinical outcome. Eur Spine J. 2010;19(4):575–82. doi: 10.1007/s00586-009-1216-1 19937064

24. van Asten SA, Jupiter DC, Mithani M, La Fontaine J, Davis KE, Lavery LA. Erythrocyte sedimentation rate and C-reactive protein to monitor treatment outcomes in diabetic foot osteomyelitis. Int Wound J. 2017;14(1):142–8. doi: 10.1111/iwj.12574 26953894.

25. Van Asten SA, Nichols A, La Fontaine J, Bhavan K, Peters EJ, Lavery LA. The value of inflammatory markers to diagnose and monitor diabetic foot osteomyelitis. Int Wound J. 2017;14(1):40–5. doi: 10.1111/iwj.12545 26634954.

26. Reitzenstein JE, Yamamoto LG, Mavoori H. Similar erythrocyte sedimentation rate and C-reactive protein sensitivities at the onset of septic arthritis, osteomyelitis, acute rheumatic fever. Pediatr Rep. 2010;2(1):e10. doi: 10.4081/pr.2010.e10 21589835

27. Nagin DS, Odgers CL. Group-Based Trajectory Modeling (Nearly) Two Decades Later. J Quant Criminol. 2010;26(4):445–53. doi: 10.1007/s10940-010-9113-7 21132047

28. Segreto FA, Beyer GA, Grieco P, Horn SR, Bortz CA, Jalai CM, et al. Vertebral Osteomyelitis: A Comparison of Associated Outcomes in Early Versus Delayed Surgical Treatment. Int J Spine Surg. 2018;12(6):703–12. Epub 2019/01/09. doi: 10.14444/5088 30619674

29. Karikari IO, Powers CJ, Reynolds RM, Mehta AI, Isaacs RE. Management of a spontaneous spinal epidural abscess: a single-center 10-year experience. Neurosurgery. 2009;65(5):919–23; discussion 23–4. Epub 2009/10/17. doi: 10.1227/01.NEU.0000356972.97356.C5 19834405.

30. Adogwa O, Karikari IO, Carr KR, Krucoff M, Ajay D, Fatemi P, et al. Spontaneous spinal epidural abscess in patients 50 years of age and older: a 15-year institutional perspective and review of the literature: clinical article. J Neurosurg Spine. 2014;20(3):344–9. Epub 2013/12/24. doi: 10.3171/2013.11.SPINE13527 24359002.

Článok vyšiel v časopise


2019 Číslo 12