Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods


Autoři: Giovanni Caruso aff001;  Vsevolod V. Gurevich aff002;  Colin Klaus aff003;  Heidi Hamm aff002;  Clint L. Makino aff004;  Emmanuele DiBenedetto aff005
Působiště autorů: CNR Ist Tecnologie Applicate ai Beni Culturali, Roma, Italy aff001;  Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America aff002;  The Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America aff003;  Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America aff004;  Department of Mathematics, Vanderbilt University, Nashville, Tennessee, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225948

Souhrn

The single photon response (SPR) in vertebrate photoreceptors is inherently variable due to several stochastic events in the phototransduction cascade, the main one being the shutoff of photoactivated rhodopsin. Deactivation is driven by a random number of steps, each of random duration with final quenching occurring after a random delay. Nevertheless, variability of the SPR is relatively low, making the signal highly reliable. Several biophysical and mathematical mechanisms contributing to variability suppression have been examined by the authors. Here we investigate the contribution of local depletion of cGMP by PDE*, the non linear dependence of the photocurrent on cGMP, Ca2+ feedback by making use of a fully space resolved (FSR) mathematical model, applied to two species (mouse and salamander), by varying the cGMP diffusion rate severalfold and rod outer segment diameter by an order of magnitude, and by introducing new, more refined, and time dependent variability functionals. Globally well stirred (GWS) models, and to a lesser extent transversally well stirred models (TWS), underestimate the role of nonlinearities and local cGMP depletion in quenching the variability of the circulating current with respect to fully space resolved models (FSR). These distortions minimize the true extent to which SPR is stabilized by locality in cGMP depletion, nonlinear effects linking cGMP to current, and Ca2+ feedback arising from the physical separation of E* from the ion channels located on the outer shell, and the diffusion of these second messengers in the cytoplasm.

Klíčová slova:

Cytoplasm – Mass diffusivity – Photons – Photoreceptors – Salamanders – Simulation and modeling – Second messenger system – Phototransduction


Zdroje

1. Arshavsky VY, Bownds MD. Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature. 1992;357:416–417. doi: 10.1038/357416a0 1317509

2. He W, Cowan CW, Wensel TG. RGS9, a GTPase accelerator for phototransduction. Neuron. 1998;20:95–102. doi: 10.1016/s0896-6273(00)80437-7 9459445

3. Yau KW, Nakatani K. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature. 1985;313:579–582. doi: 10.1038/313579a0 2578628

4. Peshenko IV, Dizhoor AM. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J Biol Chem. 2004;279:16903–16906. doi: 10.1074/jbc.C400065200 14993224

5. Weller M, Virmaux N, Mandel P. Light-stimulated phosphorylation of rhodopsin in the retina:the presence of a protein kinase that is specific for photobleached thodopsin. Proc Natl Acad Sci U S A. 1975;72:381–385. doi: 10.1073/pnas.72.1.381 164024

6. Arshavsky VY, Dizhoor AM, Shestakova IK, Philippov P. The effect of rhodopsin phosphorylation on the light-dependent activation of phosphodiesterase from bovine rod outer segment. FEBS Lett. 1985;181:264–266. doi: 10.1016/0014-5793(85)80272-6 2982661

7. Rieke F, Baylor DA. Origin of reproducibility in the responses of retinal rods to single photons. Biophys J. 1998;75:1836–1857. doi: 10.1016/S0006-3495(98)77625-8 9746525

8. Whitlock GG, Lamb TD. Variability in the time course of single photon responses from toad rods: termination of rhodopsin’s activity. Neuron. 1999;23:337–351. doi: 10.1016/s0896-6273(00)80784-9 10399939

9. Field GD, Rieke F. Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors. Neuron. 2002;35:733–747. doi: 10.1016/s0896-6273(02)00822-x 12194872

10. Pugh EN Jr. Variability of Single Photon Responses: A Cut in the Gordian Knot of Rod Phototransduction? Neuron. 1999;23:205–208. doi: 10.1016/S0896-6273(00)80772-2

11. Bisegna P, Caruso G, Andreucci D, Shen L, Gurevich VV, Hamm HE, et al. Diffusion of the second messengers in the cytoplasm acts as a variability suppressor of the single photon response in vertebrate phototransduction. Biophys J. 2008;94:3363–3383. doi: 10.1529/biophysj.107.114058 18400950

12. Caruso G, Bisegna P, Lenoci L, Andreucci D, Gurevich VV, Hamm HE, et al. Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse. PLoS Comput Biol. 2010;6(12):1–15. doi: 10.1371/journal.pcbi.1001031

13. Caruso G, Bisegna P, Andreucci D, Lenoci L, Gurevich VV, Hamm HE, et al. Identification of key factors that reduce the variability of the single photon response. Proc Natl Acad Sci USA. 2011;108(19):7804–7807. doi: 10.1073/pnas.1018960108 21518901

14. Shen L, Caruso G, Bisegna P, Andreucci D, Gurevich VV, Hamm HE, et al. Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters. IET Syst Biol. 2010;4:12–32. doi: 10.1049/iet-syb.2008.0154 20001089

15. Gross OP, Pugh EN Jr, Burns ME. Spatiotemporal cGMP dynamics in living mouse rods. Biophys J. 2012;102(8):1775–1784. doi: 10.1016/j.bpj.2012.03.035 22768933

16. Gross OP, Pugh EN Jr, Burns ME. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron. 2012;76(2):370–382. doi: 10.1016/j.neuron.2012.07.029 23083739

17. Hamer RD, Nicholas SC, Tranchina D, Liebman PA, Lamb TD. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses. J Gen Physiol. 2003;122:419–444. doi: 10.1085/jgp.200308832 12975449

18. Doan T, Mendez A, Detwiler PB, Chen J, Rieke F. Multiple phosphorylation sites confer reproducibility of the rod’s single-photon responses. Science. 2006;313(5786):530–533. doi: 10.1126/science.1126612 16873665

19. Doan T, Azevedo AW, Hurley JB, Rieke F. Arrestin Competition Influences the Kinetics and Variability of the Single-Photon Responses of Mammalian Rod Photoreceptors. J Neurosci. 2009;29(38):11867–11879. doi: 10.1523/JNEUROSCI.0819-09.2009 19776273

20. Mendez A, Burns ME, Roca A, Lem J, Wu LW, Simon MI, et al. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron. 2000;28:153–164. doi: 10.1016/s0896-6273(00)00093-3 11086991

21. Field GD, Sampath AP, Rieke F. Retinal processing near absolute threshold: From behavior to mechanism. Annu Rev Physiol. 2005;67:491–514. doi: 10.1146/annurev.physiol.67.031103.151256 15709967

22. Taylor WR, Smith RG. Transmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina. Vision Res. 2004;44:3269–3276. doi: 10.1016/j.visres.2004.07.043 15535994

23. Andreucci D, Bisegna P, Caruso G, Hamm HE, DiBenedetto E. Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction. Biophys J. 2003;85:1358–1376. doi: 10.1016/S0006-3495(03)74570-6 12944255

24. Caruso G, Bisegna P, Shen L, Andreucci D, Hamm HE, DiBenedetto E. Modeling the role of incisures in vertebrate phototransduction. Biophys J. 2006;91:1192–1212. doi: 10.1529/biophysj.106.083618 16714347

25. Andreucci D, Bisegna P, DiBenedetto E. Homogenization and concentrated capacity for the heat equation with non-linear variational data in reticular almost disconnected structures and applications to visual transduction. Ann Mat Pura Appl. 2003;182(4):375–407. doi: 10.1007/s10231-003-0072-6

26. Andreucci D, Bisegna P, DiBenedetto E. Homogenization and Concentration of Capacity in Rod Outer Segments with Incisures. Applicable Analysis. 2006;85(1-3):303–331. doi: 10.1080/00036810500276381

27. Caruso G, Khanal H, Alexiades V, Rieke F, Hamm HE, DiBenedetto E. Mathematical and computational modelling of spatio-temporal signalling in rod phototransduction. IEE Proc Syst Biol. 2005;152:119–137. doi: 10.1049/ip-syb:20050019

28. Wu Q, Chen C, Koutalos Y. Longitudinal diffusion of a polar tracer in the outer segments of rod photoreceptors from different species. Photochem Photobiol. 2006;82(6):1447–1451. 16906792

29. Holcman D, Korenbrot JI. Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure. Biophys J. 2004;86:2566–2582. doi: 10.1016/S0006-3495(04)74312-X 15041693

30. Gross OP, Pugh EN Jr, Burns ME. cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Front Mol Neurosci. 2015;8:6. doi: 10.3389/fnmol.2015.00006 25788876

31. Reingruber J, Pahlberg J, Woodruff ML, Sampath AP, Fain GL, Holcman D. Detection of single photons by toad and mouse rods. Proc Natl Acad Sci U S A. 2013;110:19378–19383. doi: 10.1073/pnas.1314030110 24214653

32. Caruso G. klauscj68/Homogenized-Rod-Outersegment-FEM: Release of our Homogenized ROS Photoreceptor Cell FEM code; 2019. Available from: https://doi.org/10.5281/zenodo.3334503.

33. Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, et al. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci U S A. 2001;98:9948–9953. doi: 10.1073/pnas.171308998 11493703

34. Burns ME, Mendez A, Chen J, Baylor DA. Dynamics of cyclic GMP synthesis in retinal rods. Neuron. 2002;36:81–91. doi: 10.1016/s0896-6273(02)00911-x 12367508

35. Makino CL, Wen XH, Michaud NA, Covington HI, DiBenedetto E, Hamm HE, et al. Rhodopsin Expression Level Affects Rod Outer Segment Morphology and Photoresponse Kinetics. PLoS One. 2012;7(5):1–7. doi: 10.1371/journal.pone.0037832

36. Nilsson DE. Photoreceptor evolution:ancient siblings serve different tasks. Curr Biol. 2005;15:R94–96. doi: 10.1016/j.cub.2005.01.027 15694299

37. Fain GL, Hardie R, Laughlin SB. Phototransduction and the evolution of photoreceptors. Curr Biol. 2010;20:R114–124. doi: 10.1016/j.cub.2009.12.006 20144772

38. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004;306:869–871. doi: 10.1126/science.1099955 15514158

39. Tanaka M, Tachibana M. Independent control of reciprocal and lateral inhibition at the axon terminal of retinal bipolar cells. J Physiol. 2013;591:3833–3851. doi: 10.1113/jphysiol.2013.253179 23690563


Článok vyšiel v časopise

PLOS One


2019 Číslo 12