Generation of targeted homozygosity in the genome of human induced pluripotent stem cells

Autoři: Yasuhide Yoshimura aff001;  Ayako Yamanishi aff001;  Tomo Kamitani aff001;  Jin-Soo Kim aff002;  Junji Takeda aff001
Působiště autorů: Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan aff001;  Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225740


When loss of heterozygosity (LOH) is correlated with loss or gain of a disease phenotype, it is often necessary to identify which gene or genes are involved. Here, we developed a region-specific LOH-inducing system based on mitotic crossover in human induced pluripotent stem cells (hiPSCs). We first tested our system on chromosome 19. To detect homozygous clones generated by LOH, a positive selection cassette was inserted at the AASV1 locus of chromosome 19. LOHs were generated by the combination of allele-specific double-stranded DNA breaks introduced by CRISPR/Cas9 and suppression of Bloom syndrome (BLM) gene expression by the Tet-Off system. The BLM protein inhibitor ML216 exhibited a similar crossover efficiency and distribution of crossover sites. We next applied this system to the short arm of chromosome 6, where human leukocyte antigen (HLA) loci are located. Genotyping and flow cytometric analysis demonstrated that LOHs associated with chromosomal crossover occurred at the expected positions. Although careful examination of HLA-homozygous hiPSCs generated from parental cells is needed for cancer predisposition and effectiveness of differentiation, they may help to mitigate the current shortcoming of hiPSC-based transplantation related to the immunological differences between the donor and host.

Klíčová slova:

Genetic loci – Homozygosity – Mammalian genomics – Molecular genetics – Polymerase chain reaction – Transfection – Electroporation


1. Yusa K, Horie K, Kondoh G, Kouno M, Maeda Y, Kinoshita T, et al. Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Nature. 2004; 429: 896–899. doi: 10.1038/nature02646 15215867.

2. Horie K, Kokubu C, Yoshida J, Akagi K, Isotani A, Oshitani A, et al. A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. Nat Methods. 2011; 8: 1071–1077. doi: 10.1038/nmeth.1739 22020066.

3. Guo G, Wang W, Bradley A. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature. 2004; 429: 891–895. doi: 10.1038/nature02653 15215866.

4. Yamanishi A, Yusa K, Horie K, Tokunaga M, Kusano K, Kokubu C, et al. Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Genome Res. 2013; 23: 1462–1473. doi: 10.1101/gr.152744.112 23908384.

5. Liu M, Maurano MT, Wang H, Qi H, Song CZ, Navas PA, et al. Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol. 2015; 33: 198–203. doi: 10.1038/nbt.3062 25580597.

6. Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep. 2017; 7: 43613. doi: 10.1038/srep43613 28252665.

7. Igawa K, Kokubu C, Yusa K, Horie K, Yoshimura Y, Yamauchi K, et al. Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells. Stem Cells Transl Med. 2014; 3: 992–1001. doi: 10.5966/sctm.2013-0179 25024429.

8. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009; 27: 851–857. doi: 10.1038/nbt.1562 19680244.

9. Casanova E, Fehsenfeld S, Lemberger T, Shimshek DR, Sprengel R, Mantamadiotis T. ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis. 2002; 34: 208–214. doi: 10.1002/gene.10153 12395386.

10. Sadhu MJ, Bloom JS, Day L, Kruglyak L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science. 2016; 352: 1113–1116. doi: 10.1126/science.aaf5124 27230379.

11. Riolobos L, Hirata RK, Turtle CJ, Wang PR, Gornalusse GG, Zavajlevski M, et al. HLA engineering of human pluripotent stem cells. Mol Ther. 2013; 21: 1232–1241. doi: 10.1038/mt.2013.59 23629003.

12. Nguyen GH, Dexheimer TS, Rosenthal AS, Chu WK, Singh DK, Mosedale G, et al. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol. 2013; 20: 55–62. doi: 10.1016/j.chembiol.2012.10.016 23352139.

13. Lazzarano S, Kucka M, Castro JPL, Naumann R, Medina P, Fletcher MNC, et al. Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2018. doi: 10.1073/pnas.1717474115 29563231.

14. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011; 478: 391–394. doi: 10.1038/nature10424 21993621.

15. Wang D, Li J, Song CQ, Tran K, Mou H, Wu PH, et al. Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice. Nat Biotechnol. 2018; 36: 839–842. doi: 10.1038/nbt.4219 30102296.

16. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013; 13: 382–384. doi: 10.1016/j.stem.2013.08.003 24094319.

17. Stevens KR, Murry CE. Human Pluripotent Stem Cell-Derived Engineered Tissues: Clinical Considerations. Cell Stem Cell. 2018; 22: 294–297. doi: 10.1016/j.stem.2018.01.015 29499147.

18. Hong CH, Sohn HJ, Lee HJ, Cho HI, Kim TG. Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother. 2017; 40: 201–210. doi: 10.1097/CJI.0000000000000176 28604557.

19. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA. Targeted Disruption of the beta2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. Stem Cells Transl Med. 2015; 4: 1234–1245. doi: 10.5966/sctm.2015-0049 26285657.

20. Thielens A, Vivier E, Romagne F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol. 2012; 24: 239–245. doi: 10.1016/j.coi.2012.01.001 22264929.

21. Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, et al. Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell. 2019. doi: 10.1016/j.stem.2019.02.005 30853558.

Článok vyšiel v časopise


2019 Číslo 12