Simple non-mydriatic retinal photography is feasible and demonstrates retinal microvascular dilation in Chronic Obstructive Pulmonary Disease (COPD)


Autoři: G. J. McKay aff001;  R. V. McCarter aff001;  R. E. Hogg aff001;  D. H. Higbee aff002;  M-P. K. Bajaj aff004;  D. R. Burrage aff003;  S. Ruickbie aff003;  E. H. Baker aff003;  P. W. Jones aff002;  J. W. Dodd aff002
Působiště autorů: Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland aff001;  Academic Respiratory Unit, Southmead Hospital, Bristol, United Kingdom aff002;  Neuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom aff003;  Clinical Pharmacology, Institute of Infection and Immunity Institute, St George’s, University of London, London, United Kingdom aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227175

Souhrn

Background

Chronic Obstructive Pulmonary Disease (COPD) is associated with an increased risk of myocardial infarction and stroke but it remains unclear how to identify microvascular changes in this population.

Objectives

We hypothesized that simple non-mydriatic retinal photography is feasible and can be used to assess microvascular damage in COPD.

Methods

Novel Vascular Manifestations of COPD was a prospective study comparing smokers with and without COPD, matched for age. Non-mydriatic, retinal fundus photographs were assessed using semi-automated software.

Results

Retinal images from 24 COPD and 22 control participants were compared. Cases were of similar age to controls (65.2 vs. 63.1 years, p = 0.38), had significantly lower Forced Expiratory Volume in one second (FEV1) (53.4 vs 100.1% predicted; p < 0.001) and smoked more than controls (41.7 vs. 29.6 pack years; p = 0.04). COPD participants had wider mean arteriolar (155.6 ±15 uM vs. controls [142.2 ± 12 uM]; p = 0.002) and venular diameters (216.8 ±20.7 uM vs. [201.3± 19.1 uM]; p = 0.012). Differences in retinal vessel caliber were independent of confounders, odds ratios (OR) = 1.08 (95% confidence intervals [CI] = 1.02, 1.13; p = 0.007) and OR = 1.05 (CI = 1.01, 1.09; p = 0.011) per uM increase in arteriolar and venular diameter respectively. FEV1 remained significantly associated with retinal vessel dilatation r = -0.39 (p = 0.02).

Conclusions

Non-mydriatic retinal imaging is easily facilitated. We found significant arteriole and venous dilation in COPD compared to age-matched smokers without COPD associated with lung function independent of standard cardiovascular risk factors. Retinal microvascular changes are known to be strongly associated with future vascular events and retinal photography offers potential to identify this risk.

Trial registration

clinicaltrials.gov NCT02060292.

Klíčová slova:

Antihypertensives – Arterioles – Eyes – Fractals – Chronic obstructive pulmonary disease – Medical risk factors – Photography – Retinal vessels


Zdroje

1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–555. doi: 10.1164/rccm.200703-456SO 17507545

2. Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J. 2003;21:347–360. doi: 10.1183/09031936.03.00405703 12608452

3. Maclay JD, McAllister DA, Macnee W. Cardiovascular risk in chronic obstructive pulmonary disease. Respirology. 2007;12:634–641. doi: 10.1111/j.1440-1843.2007.01136.x 17875049

4. Feary JR, Rodrigues LC, Smith CJ, Hubbard RB, Gibson JE. Prevalence of major comorbidities in subjects with COPD and incidence of myocardial infarction and stroke: a comprehensive analysis using data from primary care. Thorax. 2010;65:956–962. doi: 10.1136/thx.2009.128082 20871122

5. Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med. 2005;142:233–239. doi: 10.7326/0003-4819-142-4-200502150-00005 15710956

6. Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, et al. Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol. 1998;274(6 Pt 1):L908–13. doi: 10.1152/ajplung.1998.274.6.L908 9609729

7. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33:1165–1185. doi: 10.1183/09031936.00128008 19407051

8. McKay GJ, McCarter RV, Hogg RE, Bajaj MPK, Burrage D, Ruickbie S, et al. Retinal Microvascular Changes In People With COPD Compared To Age-Matched Smokers Without COPD. American Thoracic Society 2017 International Conference; Washington DC: Am J Respir Crit Care Med. 2017. p. A1012.

9. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105:1652–1660. doi: 10.1152/japplphysiol.90549.2008 18772322

10. Poels MM, Zaccai K, Verwoert GC, Vernooij MW, Hofman A, van der Lugt A, et al. Arterial stiffness and cerebral small vessel disease: The Rotterdam Scan Study. Stroke. 2012;43:2637–2642. doi: 10.1161/STROKEAHA.111.642264 22879099

11. McAllister DA, Maclay JD, Mills NL, Mair G, Miller J, Anderson D, et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176:1208–1214. doi: 10.1164/rccm.200707-1080OC 17885263

12. Cooper LS, Wong TY, Klein R, Sharrett AR, Bryan RN, Hubbard LD, et al. Retinal Microvascular abnormalities and MRI-defined subclinical cerebral infarction: The Atherosclerosis Risk in Communities study. Stroke. 2006;37:82–86. doi: 10.1161/01.STR.0000195134.04355.e5 16306463

13. Kawasaki R, Xie J, Cheung N, Lamoureux E, Klein R, Klein BEK, et al. Retinal microvascular signs and risk of stroke. The Multi-Ethnic Study of Atherosclerosis (MESA). Stroke. 2012;43:3245–3251. doi: 10.1161/STROKEAHA.112.673335 23111439

14. de Jong FJ, Schrijvers EMC, Ikram MK, Koudstaal PJ, de Jong PTVM, Hofman A, et al. Retinal vascular caliber and risk of dementia: The Rotterdam Study. Neurology. 2011;76:816–821. doi: 10.1212/WNL.0b013e31820e7baa 21288987

15. Harris B, Klein R, Jerosch-Herold M, Hoffman EA, Ahmed FS, Jacobs DR Jr., et al. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study. PloS One. 2012;7:e50224. doi: 10.1371/journal.pone.0050224 23284634

16. Chew SK, Colville D, Canty P, Hutchinson A, Wong A, Luong V, et al. Hypertensive/microvascular disease and COPD: a case control study. Kidney Blood Press Res. 2016;41:29–39. doi: 10.1159/000368544 26751964

17. Wong TY, Islam FM, Klein R, Klein BE, Cotch MF, Castro C, et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA). Invest Ophthalmol Vis Sci. 2006;47:2341–2350. doi: 10.1167/iovs.05-1539 16723443

18. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007;370:741–750 doi: 10.1016/S0140-6736(07)61377-4 17765523

19. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x 15817019

20. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline LN. Development and first validation of the COPD assessment test. Eur Respir J. 2009;34:648–654. doi: 10.1183/09031936.00102509 19720809

21. Brusasco V, Crapo R, Viegi G. Coming together: the ATS/ERS consensus on clinical pulmonary function testing. Eur Respir J. 2005;26:1–2. doi: 10.1183/09031936.05.00034205 15994380

22. Williams MA, McGowan AJ, Cardwell CR, Cheung CY, Craig D, Passmore P, et al. Retinal microvascular network attenuation in Alzheimer's disease. Alzheimers Dement (Amst). 2015;1:229–235.

23. Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BE. Revised formulas for summarizing retinal vessel diameters. Curr Eye Res. 2003;27:143–149. doi: 10.1076/ceyr.27.3.143.16049 14562179

24. Cheung CY, Hsu W, Lee ML, Wang JJ, Mitchell P, Lau QP, et al. A new method to measure peripheral retinal vascular caliber over an extended area. Microcirculation (New York, NY: 1994). 2010;17:495–503.

25. Liew G, Wang JJ, Cheung N, Zhang YP, Hsu W, Lee ML, et al. The retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology. 2008;115:1951–1956. doi: 10.1016/j.ophtha.2008.05.029 18692247

26. Hart WE, Goldbaum M, Cote B, Kube P, Nelson MR. Measurement and classification of retinal vascular tortuosity. Int J Med Inform. 1999;53:239–252. doi: 10.1016/s1386-5056(98)00163-4 10193892

27. Zamir M, Medeiros JA, Cunningham TK. Arterial bifurcations in the human retina. J Gen Physiol. 1979;74:537–548. doi: 10.1085/jgp.74.4.537 512630

28. Hughes AD, Wong TY, Witt N, Evans R, Thom SA, Klein BE, et al. Determinants of retinal microvascular architecture in normal subjects. Microcirculation (New York, NY: 1994). 2009;16:159–166.

29. de Jong FJ, Vernooij MW, Ikram MK, Ikram MA, Hofman A, Krestin GP, et al. Arteriolar oxygen saturation, cerebral blood flow, and retinal vessel diameters. The Rotterdam Study. Ophthalmology. 2008;115:887–892. doi: 10.1016/j.ophtha.2007.06.036 18067967

30. Rosenberg ML, Chan DG, Francis IC, Coroneo MT. Smokers’ veins: a useful clinical sign–response. Clin Exp Ophthalmol. 2005;33:676–676.

31. Vaes AW, Spruit MA, Theunis J, Nandu G, Vanfleteren LE, Franssen ME, et al. Looking into the eye of patients with chronic obstructive pulmonary disease: an opportunity for better microvascular profiling of these complex patients. Acta Ophthalmol. 2018: 96:539–549. doi: 10.1111/aos.13765 29770573

32. Ozcimen M, Sakarya Y, Kurtipek E et al. Peripapillary choroidal thickness in patients with chronic obstructive pulmonary disease. Cutan Ocul Toxicol. 2016:35: 26–30. doi: 10.3109/15569527.2015.1004079 25690045

33. Ugurlu E, Pekel G, Altinisik G, Bozkurt K, Can I, Evyapan F. New aspect for systemic effects of COPD: eye findings. Clin Respir J. 2016:12:247–252. doi: 10.1111/crj.12523 27401776

34. Gok M, Ozer MA, Ozen S, Botan Yildirim B. The evaluation of retinal and choroidal structural changes by optical coherence tomography in patients with chronic obstructive pulmonary disease. Curr Eye Res. 2017:43:1–6.

35. Tan KA, Gupta P, Agarwal A, Chhablani J, Cheng CY, Keane PA, et al. State of science: choroidal thickness and systemic health. Surv Ophthalmol. 2016:61: 566–581. doi: 10.1016/j.survophthal.2016.02.007 26980268

36. Wong TY, Shankar A, Klein R, Klein BE, Hubbard LD. Retinal arteriolar narrowing, hypertension, and subsequent risk of diabetes mellitus", Arch Intern Med. 2005:165:1060–1065. doi: 10.1001/archinte.165.9.1060 15883247

37. Wang JJ, Baker ML, Hand PJ, et al. Transient ischemic attack and acute ischemic stroke: associations with retinal microvascular signs. Stroke. 2011:42:404–408. doi: 10.1161/STROKEAHA.110.598599 21193748

38. Wong TY, Islam FA, Klein R, et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA). Invest Ophthalmol Vis Sci. 2006:47:2341–2350. doi: 10.1167/iovs.05-1539 16723443

39. Chew SK, Xie J, Wang JJ. Retinal arteriolar diameter and the prevalence and incidence of hypertension: a systematic review and meta-analysis of their association. Curr Hypertens Rep. 2012:14:144–151. doi: 10.1007/s11906-012-0252-0 22322543


Článok vyšiel v časopise

PLOS One


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa