Hyperkalemia treatment modalities: A descriptive observational study focused on medication and healthcare resource utilization


Autoři: Nihar R. Desai aff001;  Christopher G. Rowan aff002;  Paula J. Alvarez aff003;  Jeanene Fogli aff004;  Robert D. Toto aff005
Působiště autorů: Internal Medicine, Center for Outcomes Research and Evaluation, Yale University, New Haven, Connecticut, United States of America aff001;  Pharmacoepidemiology, COHRDATA, Santa Monica, California, United States of America aff002;  Managed Care Health Outcomes, Relypsa, Inc., a Vifor Pharma Company, Redwood City, California, United States of America aff003;  Medical Affairs, Relypsa, Inc., a Vifor Pharma Company, Redwood City, California, United States of America aff004;  Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226844

Souhrn

Renin-angiotensin-aldosterone system inhibitor (RAASi) therapy has been shown to improve outcomes among patients with congestive heart failure, diabetes, or renal dysfunction. These patients are also at risk for the development of hyperkalemia (HK), often leading to down-titration and/or discontinuation of RAASi therapy. Patiromer is the first sodium-free, non-absorbed potassium (K+) binder approved for the treatment of hyperkalemia (HK) in over 50 years. We described the association between use of K+ binders (Patiromer and sodium polystyrene sulfonate [SPS]) and renin-angiotensin-aldosterone system inhibitor (RAASi), on healthcare resource utilization (HRU). The study population consisted of Medicare Advantage patients with HK (K+ ≥ 5.0 mmol/L) in Optum’s Clinformatics® Data Mart between 1/1/2016–12/31/2017. Patiromer and (SPS) initiators, and HK patients not exposed to a K+ binder (NoKb) were included. The index date was the date of the first K+ binder dispensing or HK diagnosis. Outcomes assessed at 6 months post-index were: (1) K+ binder utilization, (2) RAASi continuation, and (3) HRU (pre- vs post-index). HRU change was analyzed using McNemar’s statistical test. Study cohorts included 610 (patiromer), 5556 (SPS), and 21,282 (NoKb) patients. Overall baseline patient characteristics were: mean age 75 years; female 49%, low-income subsidy 29%, chronic kidney disease 48% (63% for patiromer cohort), and congestive heart failure 29%. At 6 months post-index, 28% (patiromer) and 2% (SPS) remained continuously exposed to the index K+ binder. RAASi continued for 78% (patiromer), 57% (SPS), and 57% (NoKb). The difference (pre- vs post-index) in hospitalized patients was: –9.4% (patiromer; P<0.05), –7.2% (SPS), and +16.8% (NoKb; P<0.001). Disparate K+ binder utilization patterns were observed. The majority of patiromer patients continued RAASi therapy while the percentage of SPS patients that continued RAASi therapy was lower, overlapping CIs were observed. Following continuous patiromer exposure, statistically significant reductions in hospital admissions and emergency department visits were observed, continuous SPS exposure observed no statistically significant reductions in either hospitalizations or ED visits, while NoKb patients with continuous exposure had statistically significant increases in both. Further research, with a larger sample size using comparative analytic methods, is warranted.

Klíčová slova:

Critical care and emergency medicine – Hospitals – Chronic kidney disease – Heart failure – Medicare – Polystyrene – diabetes mellitus – ACE inhibitor therapy


Zdroje

1. Einhorn LM, Zhan M, Hsu VD, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009;169(12):1156–62. doi: 10.1001/archinternmed.2009.132 19546417; PubMed Central PMCID: PMC3544306.

2. Kovesdy CP, Rowan CG, Conrad A, Spiegel DM, Fogli J, Oestreicher N, et al. Real-World Evaluation of Patiromer for the Treatment of Hyperkalemia in Hemodialysis Patients. Kidney Int Rep. 2019;4(2):301–9. doi: 10.1016/j.ekir.2018.10.020 30775627

3. Epstein M, Lifschitz MD. The Unappreciated Role of Extrarenal and Gut Sensors in Modulating Renal Potassium Handling: Implications for Diagnosis of Dyskalemias and Interpreting Clinical Trials. Kidney Int Rep. 2016;1(1):43–56. doi: 10.1016/j.ekir.2016.03.001 29142913; PubMed Central PMCID: PMC5678840.

4. Palmer B. Regulation of Potassium Homeostasis. Clin J Am Soc Nephrol. 2015;10(6):1050–60. doi: 10.2215/CJN.08580813 24721891; pmcid: PMC4455213.

5. Kovesdy CP. Management of hyperkalaemia in chronic kidney disease. Nat Rev Nephrol. 2014;10(11):653–62. doi: 10.1038/nrneph.2014.168 25223988.

6. Lazich L, Bakris GL. Prediction and Management of Hyperkalemia Across the Spectrum of Chronic Kidney Disease. Semin Nephrol. 2014;34(3):333–9. doi: 10.1016/j.semnephrol.2014.04.008 25016403.

7. Sarafidis PA, Blacklock R, Wood E, Rumjon A, Simmonds S, Fletcher-Rogers J, et al. Prevalence and Factors Associated with Hyperkalemia in Predialysis Patients Followed in a Low-Clearance Clinic. Clin J Am Soc Nephrol. 2012;7(8):1234–41. doi: 10.2215/CJN.01150112 22595825; PubMed Central PMCID: PMC3408123.

8. Jain N, Kotla S, Little BB, Weideman RA, Brilakis ES, Reilly RF, et al. Predictors of Hyperkalemia and Death in Patients With Cardiac and Renal Disease. Am J Cardiol. 2012;109(10):1510–3. doi: 10.1016/j.amjcard.2012.01.367 22342847; PubMed Central PMCID: PMC3408123.

9. Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004;351:585–92. doi: 10.1056/NEJMra035279 15295051.

10. Albert NM, Yancy Cw, Liang L, et al. Use of aldosterone antagonists in heart failure. JAMA. 2009;302:1658–65. doi: 10.1001/jama.2009.1493 19843900.

11. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60. doi: 10.1056/NEJMoa011303 11565517.

12. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9. doi: 10.1056/NEJMoa011161 11565518.

13. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease—A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87. doi: 10.7326/0003-4819-135-2-200107170-00007 11453706.

14. Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis—A randomized controlled trial. JAMA. 2001;285(21):2719–28. doi: 10.1001/jama.285.21.2719 11386927.

15. Group CTS. Effects of enalapril on mortality in severe congestive-heart-failure-results of the Cooperative-North-Scandinavian-Enalapril-Survival-Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–35. doi: 10.1056/NEJM198706043162301 2883575.

16. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341(10):709–17. doi: 10.1056/NEJM199909023411001 10471456.

17. Epstein M, Alvarez PJ, Reaven NL, et al. Evaluation of clinical outocmes and costs based on prescribed dose level of renin-angiotensin-aldosterone system inhibitors. Am J Manag Care. 2016;22(S11):S313–S26. 27668789.

18. Ouwerkerk W, Voors AA, Anker SD, Cleland JG, Dickstein K, Filippatos G, et al. Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study. Eur Heart J. 2017;38(24):1883–90. doi: 10.1093/eurheartj/ehx026 28329163.

19. Chaitman M, Dixit D, Bridgeman MB. Potassium-Binding Agents for the Clinical Management of Hyperkalemia. P & T: a peer-reviewed journal for formulary management. 2016;41(1):43–50. 26765867; PubMed Central PMCID: PMC4699486.

20. Veltassa® (patiromer) for oral suspension [package insert]. Redwood City CR, Inc. 2018.

21. Li L, Harrison SD, Cope MJ, Park C, Lee L, Salaymeh F, et al. Mechanism of Action and Pharmacology of Patiromer, a Nonabsorbed Cross-Linked Polymer That Lowers Serum Potassium Concentration in Patients With Hyperkalemia. Journal of cardiovascular pharmacology and therapeutics. 2016;21(5):456–65. doi: 10.1177/1074248416629549 26856345; PubMed Central PMCID: PMC4976659.

22. Pitt B, Bakris GL, Bushinsky DA, Garza D, Mayo MR, Stasiv Y, et al. Effect of patiromer on reducing serum potassium and preventing recurrent hyperkalaemia in patients with heart failure and chronic kidney disease on RAAS inhibitors. Eur J Heart Fail. 2015;17(10):1057–65. doi: 10.1002/ejhf.402 26459796; PubMed Central PMCID: PMC5057342.

23. Weir MR, Bakris GL, Bushinsky DA, Mayo MR, Garza D, Stasiv Y, et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med. 2015;372(3):211–21. doi: 10.1056/NEJMoa1410853 25415805.

24. Bakris GL, Pitt B, Weir MR, Freeman MW, Mayo MR, Garza D, et al. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease the AMETHYST-DN randomized clinical trial. JAMA-J Am Med Assoc. 2015;314(2):151–61. doi: 10.1001/jama.2015.7446 26172895.

25. Yildirim T AM, Piskinpasa S, Aybal-Kutlugun A, Yilmaz R, Altun B, Erdem Y, Turgan C. Major barriers against renin-angiotensin-aldosterone system blocker use in chronic kidney disease stages 3–5 in clinical practice: a safety concern? Ren Fail. 2012;34(9):1095–9. doi: 10.3109/0886022X.2012.717478 22950572.

26. Betts KA, Woolley JM, Mu F, Xiang C, Tang WX, Wu EQ. The Cost of Hyperkalemia in the United States. Kidney Int Rep. 2018;3(2):385–93. doi: 10.1016/j.ekir.2017.11.003 29725642; PubMed Central PMCID: PMC5932129.

27. Drieling RL, LaCroix AZ, Beresford SAA, Boudreau DM, Kooperberg C, Heckbert SR. Validity of Self-Reported Medication Use Compared With Pharmacy Records in a Cohort of Older Women: Findings From the Women's Health Initiative. Am J Epidemiol. 2016;184(3):233–8; PubMed Central PMCID: PMC4967595. doi: 10.1093/aje/kwv446 27402774

28. Richardson K, Kenny RA, Peklar J, Bennett K. Agreement between patient interview data on prescription medication use and pharmacy records in those aged older than 50 years varied by therapeutic group and reporting of indicated health conditions. J Clin Epidemiol. 2013;66(11):1308–16. doi: 10.1016/j.jclinepi.2013.02.016 23968693.

29. Grymonpre R, Cheang M, Fraser M, Metge C, Sitar DS. Validity of a prescription claims database to estimate medication adherence in older persons. Med Care. 2006;44(5):471–7. doi: 10.1097/01.mlr.0000207817.32496.cb 16641666.

30. Curtis JR, Westfall AO, Allison J, Freeman A, Kovac SH, Saag KG. Agreement and validity of pharmacy data versus self-report for use of osteoporosis medications among chronic glucocorticoid users. Pharmacoepidemiol Drug Saf. 2006;15(10):710–8. doi: 10.1002/pds.1226 16498575.

31. Erickson SR, Coombs JH, Kirking DM, Azimi AR. Compliance from self-reported versus pharmacy claims data with metered-dose inhalers. Ann Pharmacother. 2001;35(9):997–1003. doi: 10.1345/aph.10379 11573875.

32. Nachega JB, Hislop M, Dowdy DW, Lo M, Omer SB, Regensberg L, et al. Adherence to highly active antiretroviral therapy assessed by pharmacy claims predicts survival in HIV-infected South African adults. Jaids. 2006;43(1):78–84. doi: 10.1097/01.qai.0000225015.43266.46 16878045.


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa