A Comprehensive Data Gathering Network Architecture in Large-Scale Visual Sensor Networks
Autoři:
Jing Zhang aff001; Pei-Wei Tsai aff002; Xingsi Xue aff001; Xiucai Ye aff003; Shunmiao Zhang aff001
Působiště autorů:
School of Information Science and Engineering, Fujian University of Technology, and Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fuzhou, China
aff001; Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, Australia
aff002; Department of Computer Science, University of Tsukuba, Tsukuba, Japan
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226649
Souhrn
The fundamental utility of the Large-Scale Visual Sensor Networks (LVSNs) is to monitor specified events and to transmit the detected information back to the sink for achieving the data aggregation purpose. However, the events of interest are usually not uniformly distributed but frequently detected in certain regions in real-world applications. It implies that when the events frequently picked up by the sensors in the same region, the transmission load of LVSNs is unbalanced and potentially cause the energy hole problem. To overcome this kind of problem for network lifetime, a Comprehensive Visual Data Gathering Network Architecture (CDNA), which is the first comparatively integrated architecture for LVSNs is designed in this paper. In CDNA, a novel α-hull based event location algorithm, which is oriented from the geometric model of α-hull, is designed for accurately and efficiently detect the location of the event. In addition, the Chi-Square distribution event-driven gradient deployment method is proposed to reduce the unbalanced energy consumption for alleviating energy hole problem. Moreover, an energy hole repairing method containing an efficient data gathering tree and a movement algorithm is proposed to ensure the efficiency of transmitting and solving the energy hole problem. Simulations are made for examining the performance of the proposed architecture. The simulation results indicate that the performance of CDNA is better than the previous algorithms in the realistic LVSN environment, such as the significant improvement of the network lifetime.
Klíčová slova:
Network analysis – Algorithms – Computer architecture – Radii – Wildfires – Fire engineering – Wireless sensor networks – Information architecture
Zdroje
1. He Y, Lee I, and Guan L. Distributed algorithms for network lifetime maximization in wireless visual sensor networks. IEEE Trans. Circuits and Syst. Video Technology. 2009; 19(5): 704–718. doi: 10.1109/TCSVT.2009.2017411
2. Eriksson E, Dan G, and Fodor V. Coordinating Distributed Algorithms for Feature Extraction Offloading in Multi-Camera Visual Sensor Networks. IEEE Trans. Circuits and Syst. Video Technology. 2018; 28(11): 3288–3299. doi: 10.1109/TCSVT.2017.2745102
3. Senthil Kumar K, Amutha R, Palanivelan M, Gururaj D, Richard Jebasingh S, and Anitha Mary M, et al. Receive diversity based transmission data rate optimization for improved network lifetime and delay efficiency of wireless body area networks. Plos one. 2018; 13(10): e0206027. doi: 10.1371/journal.pone.0206027 30359405
4. Dieber B, Micheloni C, and Rinner B. Resource-aware coverage and task assignment in visual sensor networks. IEEE Trans. Circuits and Syst. Video Technology. 2011; 21(10): 1424–1437. doi: 10.1109/TCSVT.2011.2162770
5. Zhang J, Liu S, Tsai PW, Zou FM, and Ji XR. Directional virtual backbone based data aggregation scheme for wireless visual sensor networks. Plos One. 2018; 13(5): e0196705. doi: 10.1371/journal.pone.0196705 29763464
6. Ziaur R, Fazirulhisyam H, Rasid MFA, Mohamed O, and Yong D. Totally opportunistic routing algorithm (tora) for underwater wireless sensor network. Plos one. 2018; 13(6): e0197087. doi: 10.1371/journal.pone.0197087
7. Ren J, Zhang Y, Zhang K, Liu A, Chen J, and Shen XS. Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Transactions on Industrial Informatics. 2016; 12(2): 788–800. doi: 10.1109/TII.2015.2411231
8. Xu K, Hassanein H, Takahara G, and Wang Q. Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing. 2010; 9(2): 145–159. doi: 10.1109/TMC.2009.105
9. Liu X. A Deployment Strategy for Multiple Types of Requirements in Wireless Sensor Networks. IEEE Transactions on Cybernetics. 2017; 45(10): 2364–2376. doi: 10.1109/TCYB.2015.2443062
10. Castano F, Rossi A, Sevaux M, and Velasco N. An exact approach to extend network lifetime in a general class of wireless sensor networks. Information Sciences. 2018; 433-434: 274–91. doi: 10.1016/j.ins.2017.12.028
11. Ugur YH, Cagri GV, and Bulent T. Packet size optimization for lifetime maximization in underwater acoustic sensor networks. IEEE Trans. Industrial Informatics. 2019; 15(2): 719–729. doi: 10.1109/TII.2018.2841830
12. Pan JS, Lee CY, Sghaier A, Zeghid M, and Xie J. Novel systolization of subquadratic space complexity multipliers based on toeplitz matrix-vector product approach. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2019; 27(7): 1614–1622. doi: 10.1109/TVLSI.2019.2903289
13. Yao Y, Cao Q, and Vasilakos AV. Edal: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. IEEE/ACM Trans. Networking. 2015; 23(3): 810–823. doi: 10.1109/TNET.2014.2306592
14. Pan JS, Kong L, Sung TW, Tsai PW and Snasel V. α-Fraction First Strategy for Hirarchical Wireless Sensor Neteorks. Journal of Internet Technology. 2018; 19(6): 1717–1726.
15. Zhang J, Xu L, Tsai PW, Lin ZW. Minimization of delay and collision with cross cube spanning tree in wireless sensor networks. Wireless Networks. 2019; 25(4): 1875–1893. doi: 10.1007/s11276-017-1653-4
16. He MZ and Wu D. Resource allocation and performance analysis of wireless video sensors. IEEE Trans. Circuits Syst. Video Technol. 2006; 16(5): 590–599. doi: 10.1109/TCSVT.2006.873154
17. Jiang X, Fang Z, Xiong NN, Gao Y, Huang B, Zhang J, Yu L, and Harrington P. Data fusion-based multi-object tracking for unconstrained visual sensor networks. IEEE Access. 2018; 6: 13716–13728. doi: 10.1109/ACCESS.2018.2812794
18. Wei L, Portilla J, Moreno F, Liang G, and Riesgo T. Multiple feature points representation in target localization of wireless visual sensor networks. Journal of Network and Computer Applications. 2015; 57(C): 119–128.
19. Chaurasiya VK, Jain N, and Nandi GC. A novel distance estimation approach for 3d localization in wireless sensor network using multi-dimensional scaling. Information Fusion. 2014; 15(1): 5–18. doi: 10.1016/j.inffus.2013.06.003
20. Moradi M, Rezazadeh J, and Ismail AS. A reverse localization scheme for underwater acoustic sensor networks. Sensors. 2012; 12(4): 4352–80. doi: 10.3390/s120404352 22666034
21. Wang WP, Chen L, and Wang JX. A Source-Location Privacy Protocol in WSN Based on Locational Angle. IEEE International Conference on Communications. 2008; 1630-1634.
22. Cheng L, Wu C, and Zhang Y. Multi-source localization with binary sensor networks. Journal on Communications. 2011; 32(10): 158–165.
23. Amodu MOA, and Mahmood RAR. Erratum to: impact of the energy-based and location-based leach secondary cluster aggregation on wsn lifetime. Wireless Networks. 2018; 25(5): 1379–1402.
24. Zhou B, Chen Q, Wymeersch H, Xiao P, and Zhao L. Variational inference-based positioning with nondeterministic measurement accuracies and reference location errors. IEEE Trans. Mobile Computing. 2017; 16(10): 2955–2969. doi: 10.1109/TMC.2016.2640294
25. Nasseri M, Kim J, Green R, and Alam M. Identification of the optimum relocalization time in the mobile wireless sensor network using time-bounded relocalization methodology. IEEE Trans. Vehicular Technology. 2017; 66(1): 344–357.
26. Altahir AA, Asirvadam VS, Hamid NH, Sebastian P, Saad N, and Ibrahim R. Optimizing visual sensor coverage overlaps for multiview surveillance systems. IEEE Sensors Journal. 2018; 18(11): 4544–4552. doi: 10.1109/JSEN.2018.2825781
27. Zhang J, Xu L, Zhou S, Min G, Xiang Y, and Hu J. Crossed cube ring: a k-connected virtual backbone for wireless sensor networks. Journal of Network and Computer Applications. 2017; 91(1): 75–88. doi: 10.1016/j.jnca.2017.05.001
28. Kar K, Roy A, Misra S, and Obaidat MS. On the Effects of Communication Range Shrinkage of Sensor Nodes in Mobile Wireless Sensor Networks Due to Adverse Environmental Conditions. IEEE Systems Journal. 2018; 12(3): 2048–2055. doi: 10.1109/JSYST.2016.2606459
29. Madan R, Lall S. Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Trans. Wireless Commun. 2006; 5(8): 2185–2193. doi: 10.1109/TWC.2006.1687734
30. Ding S, Nie X, Qiao H, and Zhang B. A fast algorithm of convex hull vertices selection for online classification. IEEE Trans. Neural Networks and Learning Systems. 2018; 29(4): 792–806. doi: 10.1109/TNNLS.2017.2648038
31. Zhang J, Xu L, Shen Q, and Ji XR. Localization for Jamming Attack in Wireless Sensor Networks. Intelligent Data Analysis and Applications. Springer International Publishing. 2015; 370: 361–369. doi: 10.1007/978-3-319-21206-7_30
32. Zhang J, Lin Z, Tsai P, Xu L. Entropy-driven Data Aggregation Method for Energy-efficient Wireless Sensor Networks. Information Fusion. 2020; 56:103–113. doi: 10.1016/j.inffus.2019.10.008
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- 100 let s metamizolem: jaké je jeho současné postavení v léčbě bolesti
- Masturbační chování žen v ČR − dotazníková studie
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals