A Comprehensive Data Gathering Network Architecture in Large-Scale Visual Sensor Networks

Autoři: Jing Zhang aff001;  Pei-Wei Tsai aff002;  Xingsi Xue aff001;  Xiucai Ye aff003;  Shunmiao Zhang aff001
Působiště autorů: School of Information Science and Engineering, Fujian University of Technology, and Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fuzhou, China aff001;  Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, Australia aff002;  Department of Computer Science, University of Tsukuba, Tsukuba, Japan aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0226649


The fundamental utility of the Large-Scale Visual Sensor Networks (LVSNs) is to monitor specified events and to transmit the detected information back to the sink for achieving the data aggregation purpose. However, the events of interest are usually not uniformly distributed but frequently detected in certain regions in real-world applications. It implies that when the events frequently picked up by the sensors in the same region, the transmission load of LVSNs is unbalanced and potentially cause the energy hole problem. To overcome this kind of problem for network lifetime, a Comprehensive Visual Data Gathering Network Architecture (CDNA), which is the first comparatively integrated architecture for LVSNs is designed in this paper. In CDNA, a novel α-hull based event location algorithm, which is oriented from the geometric model of α-hull, is designed for accurately and efficiently detect the location of the event. In addition, the Chi-Square distribution event-driven gradient deployment method is proposed to reduce the unbalanced energy consumption for alleviating energy hole problem. Moreover, an energy hole repairing method containing an efficient data gathering tree and a movement algorithm is proposed to ensure the efficiency of transmitting and solving the energy hole problem. Simulations are made for examining the performance of the proposed architecture. The simulation results indicate that the performance of CDNA is better than the previous algorithms in the realistic LVSN environment, such as the significant improvement of the network lifetime.

Klíčová slova:

Algorithms – Computer architecture – Fire engineering – Information architecture – Network analysis – Radii – Wildfires – Wireless sensor networks


1. He Y, Lee I, and Guan L. Distributed algorithms for network lifetime maximization in wireless visual sensor networks. IEEE Trans. Circuits and Syst. Video Technology. 2009; 19(5): 704–718. doi: 10.1109/TCSVT.2009.2017411

2. Eriksson E, Dan G, and Fodor V. Coordinating Distributed Algorithms for Feature Extraction Offloading in Multi-Camera Visual Sensor Networks. IEEE Trans. Circuits and Syst. Video Technology. 2018; 28(11): 3288–3299. doi: 10.1109/TCSVT.2017.2745102

3. Senthil Kumar K, Amutha R, Palanivelan M, Gururaj D, Richard Jebasingh S, and Anitha Mary M, et al. Receive diversity based transmission data rate optimization for improved network lifetime and delay efficiency of wireless body area networks. Plos one. 2018; 13(10): e0206027. doi: 10.1371/journal.pone.0206027 30359405

4. Dieber B, Micheloni C, and Rinner B. Resource-aware coverage and task assignment in visual sensor networks. IEEE Trans. Circuits and Syst. Video Technology. 2011; 21(10): 1424–1437. doi: 10.1109/TCSVT.2011.2162770

5. Zhang J, Liu S, Tsai PW, Zou FM, and Ji XR. Directional virtual backbone based data aggregation scheme for wireless visual sensor networks. Plos One. 2018; 13(5): e0196705. doi: 10.1371/journal.pone.0196705 29763464

6. Ziaur R, Fazirulhisyam H, Rasid MFA, Mohamed O, and Yong D. Totally opportunistic routing algorithm (tora) for underwater wireless sensor network. Plos one. 2018; 13(6): e0197087. doi: 10.1371/journal.pone.0197087

7. Ren J, Zhang Y, Zhang K, Liu A, Chen J, and Shen XS. Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Transactions on Industrial Informatics. 2016; 12(2): 788–800. doi: 10.1109/TII.2015.2411231

8. Xu K, Hassanein H, Takahara G, and Wang Q. Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing. 2010; 9(2): 145–159. doi: 10.1109/TMC.2009.105

9. Liu X. A Deployment Strategy for Multiple Types of Requirements in Wireless Sensor Networks. IEEE Transactions on Cybernetics. 2017; 45(10): 2364–2376. doi: 10.1109/TCYB.2015.2443062

10. Castano F, Rossi A, Sevaux M, and Velasco N. An exact approach to extend network lifetime in a general class of wireless sensor networks. Information Sciences. 2018; 433-434: 274–91. doi: 10.1016/j.ins.2017.12.028

11. Ugur YH, Cagri GV, and Bulent T. Packet size optimization for lifetime maximization in underwater acoustic sensor networks. IEEE Trans. Industrial Informatics. 2019; 15(2): 719–729. doi: 10.1109/TII.2018.2841830

12. Pan JS, Lee CY, Sghaier A, Zeghid M, and Xie J. Novel systolization of subquadratic space complexity multipliers based on toeplitz matrix-vector product approach. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2019; 27(7): 1614–1622. doi: 10.1109/TVLSI.2019.2903289

13. Yao Y, Cao Q, and Vasilakos AV. Edal: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. IEEE/ACM Trans. Networking. 2015; 23(3): 810–823. doi: 10.1109/TNET.2014.2306592

14. Pan JS, Kong L, Sung TW, Tsai PW and Snasel V. α-Fraction First Strategy for Hirarchical Wireless Sensor Neteorks. Journal of Internet Technology. 2018; 19(6): 1717–1726.

15. Zhang J, Xu L, Tsai PW, Lin ZW. Minimization of delay and collision with cross cube spanning tree in wireless sensor networks. Wireless Networks. 2019; 25(4): 1875–1893. doi: 10.1007/s11276-017-1653-4

16. He MZ and Wu D. Resource allocation and performance analysis of wireless video sensors. IEEE Trans. Circuits Syst. Video Technol. 2006; 16(5): 590–599. doi: 10.1109/TCSVT.2006.873154

17. Jiang X, Fang Z, Xiong NN, Gao Y, Huang B, Zhang J, Yu L, and Harrington P. Data fusion-based multi-object tracking for unconstrained visual sensor networks. IEEE Access. 2018; 6: 13716–13728. doi: 10.1109/ACCESS.2018.2812794

18. Wei L, Portilla J, Moreno F, Liang G, and Riesgo T. Multiple feature points representation in target localization of wireless visual sensor networks. Journal of Network and Computer Applications. 2015; 57(C): 119–128.

19. Chaurasiya VK, Jain N, and Nandi GC. A novel distance estimation approach for 3d localization in wireless sensor network using multi-dimensional scaling. Information Fusion. 2014; 15(1): 5–18. doi: 10.1016/j.inffus.2013.06.003

20. Moradi M, Rezazadeh J, and Ismail AS. A reverse localization scheme for underwater acoustic sensor networks. Sensors. 2012; 12(4): 4352–80. doi: 10.3390/s120404352 22666034

21. Wang WP, Chen L, and Wang JX. A Source-Location Privacy Protocol in WSN Based on Locational Angle. IEEE International Conference on Communications. 2008; 1630-1634.

22. Cheng L, Wu C, and Zhang Y. Multi-source localization with binary sensor networks. Journal on Communications. 2011; 32(10): 158–165.

23. Amodu MOA, and Mahmood RAR. Erratum to: impact of the energy-based and location-based leach secondary cluster aggregation on wsn lifetime. Wireless Networks. 2018; 25(5): 1379–1402.

24. Zhou B, Chen Q, Wymeersch H, Xiao P, and Zhao L. Variational inference-based positioning with nondeterministic measurement accuracies and reference location errors. IEEE Trans. Mobile Computing. 2017; 16(10): 2955–2969. doi: 10.1109/TMC.2016.2640294

25. Nasseri M, Kim J, Green R, and Alam M. Identification of the optimum relocalization time in the mobile wireless sensor network using time-bounded relocalization methodology. IEEE Trans. Vehicular Technology. 2017; 66(1): 344–357.

26. Altahir AA, Asirvadam VS, Hamid NH, Sebastian P, Saad N, and Ibrahim R. Optimizing visual sensor coverage overlaps for multiview surveillance systems. IEEE Sensors Journal. 2018; 18(11): 4544–4552. doi: 10.1109/JSEN.2018.2825781

27. Zhang J, Xu L, Zhou S, Min G, Xiang Y, and Hu J. Crossed cube ring: a k-connected virtual backbone for wireless sensor networks. Journal of Network and Computer Applications. 2017; 91(1): 75–88. doi: 10.1016/j.jnca.2017.05.001

28. Kar K, Roy A, Misra S, and Obaidat MS. On the Effects of Communication Range Shrinkage of Sensor Nodes in Mobile Wireless Sensor Networks Due to Adverse Environmental Conditions. IEEE Systems Journal. 2018; 12(3): 2048–2055. doi: 10.1109/JSYST.2016.2606459

29. Madan R, Lall S. Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Trans. Wireless Commun. 2006; 5(8): 2185–2193. doi: 10.1109/TWC.2006.1687734

30. Ding S, Nie X, Qiao H, and Zhang B. A fast algorithm of convex hull vertices selection for online classification. IEEE Trans. Neural Networks and Learning Systems. 2018; 29(4): 792–806. doi: 10.1109/TNNLS.2017.2648038

31. Zhang J, Xu L, Shen Q, and Ji XR. Localization for Jamming Attack in Wireless Sensor Networks. Intelligent Data Analysis and Applications. Springer International Publishing. 2015; 370: 361–369. doi: 10.1007/978-3-319-21206-7_30

32. Zhang J, Lin Z, Tsai P, Xu L. Entropy-driven Data Aggregation Method for Energy-efficient Wireless Sensor Networks. Information Fusion. 2020; 56:103–113. doi: 10.1016/j.inffus.2019.10.008

Článok vyšiel v časopise


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…

Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.


Nemáte účet?  Registrujte sa