On the genus Crossaster (Echinodermata: Asteroidea) and its distribution


Autoři: Halldis Ringvold aff001;  Truls Moum aff002
Působiště autorů: Sea Snack Norway, Bergen, Norway aff001;  Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227223

Souhrn

Several starfish (Echinodermata, Asteroidea) are keystone species of marine ecosystems, but some of the species are difficult to identify using morphological criteria only. The common sunstar, Crossaster papposus (Linnaeus, 1767), is a conspicuous species with a wide circumboreal distribution. In 1900, a closely similar species, C. squamatus (Döderlein, 1900) was described from the NE Atlantic Ocean, but subsequent authors have differed in their views on whether this is a valid taxon or rather an ecotype associated with temperature variations. We assessed the differentiating morphological characters of specimens from Norwegian and Greenland waters identified as C. papposus and C. squamatus and compared their distributions in the NE Atlantic as inferred from research cruises. The field data show that C. papposus is found mainly in temperate and shallow waters, whereas C. squamatus resides on the shelf-break in colder, mixed water masses. Intraspecific diversity and interspecific genetic differentiation of the two putative species, and their phylogenetic relationships to several Crossaster congeners worldwide, were explored using mitochondrial and nuclear DNA sequences. The molecular evidence suggests that C. papposus is the more diverse and geographically structured taxon, in line with its wide distribution. C. papposus and C. squamatus are closely related, yet clearly distinct taxa, while C. papposus and C. multispinus H.L. Clark, 1916, the latter from the South Pacific Ocean, are closely related, possibly sister taxa.

Klíčová slova:

Animal phylogenetics – DNA sequence analysis – Islands – Mitochondria – Phylogenetic analysis – Phylogenetics – Phylogeography – Starfish


Zdroje

1. Paine RT. Food web complexity and species diversity. Am Nat. 1966;100: 65–75.

2. Paine RT. A short-term experimental investigation of resource partitioning in a New Zealand rocky intertidal habitat. Ecology. 1971;52: 1096–1106.

3. Lawrence M. Starfish, Biology and Ecology of the Asteroidea. Baltimore: The Johns Hopkins University Press; 2013.

4. Menge BA, Sanford E. Ecological role of sea stars from populations to meta-ecosystems. Starfish: Biology and Ecology of the Asteroidea. In: Lawrence JM, editor. Starfish, Biology and Ecology of the Asteroidea. Baltimore: The Johns Hopkins University Press; 2013. pp. 67.

5. Clark AM, Downey ME. Starfishes of the Atlantic. London: Chapman & Hall; 1992.

6. Mah C.L. (2019). World Asteroidea Database. Crossaster Müller & Troschel, 1840. Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=123336 on 2019-12-08

7. Clusius C de [l’Escluse]. Exoticorum libri decem: quibus Animalium, Plantarum–describuntur; 1605.

8. Blake DB. A new asteroid genus from the Jurassic of England and its functional significance. Palaeontology. 1993;36: 147–154.

9. Agassiz A. North American Starfishes. Memoirs of the Museum of Comparative Zoology at Harvard College. Cambridge: Welch, Bigelow, and Company; 1877.

10. Danielssen DC, Koren J. Remarks on the genus Solaster. Ann Mag Nat Hist. 1882;10: 436–443.

11. Mortensen T. Handbook of the Echinoderms of the British Isles. London: Oxford University Press; 1927.

12. Döderlein L. Die Echinodermen. Zoologische Ergebnisse einer Üntersuchungsfahrt des deutschen Seefischerei-Vereins nach der Bäreninsel und Westspitzbergen ausgeführt im Sommer 1898 auf S.M.S. “Olga”. Wiss Meeresunters. 1900;4: 195–248.

13. Östergren H. Über die arktischen Seesterne. In: Korschelt E, editor. Zool Anz 27. Leipzig: Verlag von Wilhelm Engelmann; 1904. pp 614–616.

14. Grieg JA. Echinodermen von dem norwegischen Fichereidampfen “Michael Sars” in den Jahren 1900–1903 gesammelt. Bergens Mus Aarb. 1906;13: 1–87.

15. Ringvold H, Stien J. Biochemical differentiation of two groups within the species-complex Henricia Grey, 1840 (Echinodermata, Asteroidea) using starch-gel electrophoresis. Hydrobiol. 2001;459: 57–59.

16. Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270: 313–321.

17. Knott KE, Wray GA. Controversy and Consensus in Asteroid Systematics: New Insights to Ordinal and Familial Relationships. Amer Zool. 2000;40: 382–392.

18. Ward RD, Holmes BH, O’Hara TD. DNA barcoding discriminates echinoderm species. Mol Ecol Res. 2008;8: 1202–1211.

19. Buhl-Mortensen L, Hodnesdal H, Thorsnes T. The Norwegian Sea Floor. New Knowledge from MAREANO for Ecosystem-Based Management. Trondheim: Skipnes Kommunikasjon AS; 2015.

20. Ringvold H, Hassel A, Bamber RN, Buhl-Mortensen L. Distribution of sea spiders (Pycnogonida, Arthropoda) off northern Norway, collected by MAREANO. Mar Biol Res. 2015;11: 62–75.

21. Jørgensen LL, Ljubin P, Skjoldal HR, Ingvaldsen RB, Anisimova N, Manushin I. Distribution of benthic megafauna in the Barents Sea: baseline for an ecosystem approach to management. ICES Journ Mar Sci. 2015;72: 595–613.

22. Ringvold H, Andersen T. Starfish (Asteroidea, Echinodermata) from the Faroe Islands; spatial distribution and abundance. Deep Sea Res. 1. 2015;107: 22–30.

23. Dauvin J-C, Alizier S, Weppe A, Gudmundsson G. Diversity and zoogeography of Icelandic deep-sea Ampeliscidae (Crustacea: Amphipoda). Deep-Sea Res 1. 2012;68: 12–23.

24. Arndt A, Marquez C, Lambert P, Smith MJ. Molecular phylogeny of Eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Mol Phyl Evol. 1996;6: 425–437.

25. Petrov NB, Vladychenskaya IP, Drozdov AL, Kedrova OS. Molecular genetic markers of intra- and interspecific divergence within starfish and sea urchins (Echinodermata). Biochemistry (Moscow). 2016;81: 972–980.

26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004; 32: 1792–1797. doi: 10.1093/nar/gkh340 15034147

27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2016) MEGA X: Molecular Evolutionary Genetic Analysis across computing platforms. Molecular Biology and Evolution. 2018;35: 1547–1549. doi: 10.1093/molbev/msy096 29722887

28. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramson-Onsins SE, et al. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol. 2017;34: 3299–3302. doi: 10.1093/molbev/msx248 29029172

29. Djakonov AM. Starfish of the Soviet Union. Tabl Anal Faune URSS. 1950;34: 1–203.

30. Clark HL. Report on the sea-lilies, starfishes, brittle-stars and sea-urchins obtained by the F.I.S. "Endeavour" on the coasts of Queensland, New South Wales, Tasmania, Victoria, South Australia, and Western Australia. Biological Results of the Fishing experiments carried on by the F.I.S. Endeavour 1909–1914. Sydney: WE Smith Ltd; 1916.

31. Fisher WK. New starfishes from the Pacific Coast of North America. Proceedings of the Washington Academy of Sciences. 1906:8: 111–139.

32. Verrill AE. Monograph of the shallow-water starfishes of the North Pacific coast of America from the Arctic Ocean to California. Harriman Alaska Series of the Smithsonian Institute 1914:14: 1–408.

33. McKnight DG. The Marine Fauna of New Zealand Echinodermata: Asteroidea (Sea-stars). 3 Orders Velatida, Spinulosida, Forcipulatida, Brisingida with addenda to Paxillosida, Valvatida. Wellington: NIWA (National Institute of Water and Atmospheric Research; 2006.

34. McKnight DG. Additions to the asteroid fauna of New Zealand: families Radiasteridae, Solasteridae, Pterasteridae, Asterinidae, Ganeriidae, and Echinasteridae. New Zealand Oceanographic Institute Records. 1973:2: 1–15.

35. Sladen WP. Report on the Asteroidea. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–1876. Zoology. 30, 51. 1889.

36. Fisher WK. New starfishes from the Philippine Islands, Celebes, and the Moluccas. Proceedings of the United States National Museum. 1913:46: 201–224.

37. Fisher WK. New starfishes from deep water off California and Alaska. Bulletin of the Bureau of Fisheries. 1905:24: 291–320.

38. Sladen WP. Asteroidea dredged during the cruise of the «Knight Errant» in July and August 1880. Proceedings of the Royal Society of Edinburgh. 1882:11: 698–707.

39. Ringvold H. Artsbestemming og utbredelse av sjøstjerner (Echinodermata: Asteroidea) rundt Færøyene. M.Sc. thesis (In Norwegian), Norwegian University of Science and Technology 1996.

40. Gage JD, Pearson M, Clark AM, Paterson LJ, Tyler PA. Echinoderms of the Rockall Trough and adjacent areas. 1. Crinoidea, Asteroidea and Ophiuroidea. Bull Br Mus Nat Hist Zool. 1983;45: 263–308.

41. Clark AM. 1996. An index of names of recent Asteroidea: Part 3. Velatida and Spinulosida. In: Jangoux M, Lawrence JM, editors. Echinoderm Studies Vol. 5. Rotterdam: M. A. A. Balkema; pp.183–250.

42. Mah, CL. World Asteroidea Database. Crossaster squamatus (Döderlein, 1900). Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=124155 on 2019-12-08

43. Mah CL, Foltz D. Molecular phylogeny of the Valvatacea (Asteroidea: Echinodermata). Zool Journ Linn Soc. 2011;161: 769–788.

44. Mah CL, McKnight DG, Eagle MK, Pawson DL, Améziane N, Vance DJ, et al. Phylum Echinodermata: sea stars, brittle stars, sea urchins, sea cucumbers, sea lilies. In: Gordon DP, editor. New Zealand inventory of biodiversity: 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. Christchurch: Canterbury University Press; 2009. pp. 371–400.

45. Layton KKS, Corstorphine EA, Hebert PDN. Exploring Canadian echinoderm diversity through DNA barcodes. PLOS ONE. 2016; 1–16.

46. Loeza-Quintana T, Adamowicz SJ. Iterative calibration: A novel approach for calibrating the molecular clock using complex geological events. J Mol Evol. 2018;86: 118. doi: 10.1007/s00239-018-9831-2 29429061

47. Dons C. Norges strandfauna. Asteroider. Kgl Norske Vidensk Selsk Forh. 1935;8: 29–32.

48. Grainger EH. Sea stars (Echinodermata: Asteroidea) of arctic North America. In: Stevenson JC, editor. Fisheries Research Board of Canada Bull nr. 152; 1966. pp. 1–70.

49. Gulliksen B, Palerud R, Brattegard T, Sneli JA. Distribution of marine benthic macro-organisms at Svalbard (including Bear Islands) and Jan Mayen. Research report for DN 1999–4. Trondheim: Directorate for Nature Management; 1999.

50. Anisimova NA, Cochrane SJ. An annotated checklist of the echinoderms of the Svalbard and Franz Josef Land archipelagos and adjacent waters. Sarsia. 2003;88: 113–135.

51. Fisher WK. Asteroidea of the North Pacific and adjacent waters. 1. Phanerozonia and Spinulosa. Bull US Natn Mus. 1911; 76.

52. Hansson HG. European Echinodermata Check-List. A draft for the European Register of Marine Species (part of "Species 2000") compiled at TMBL (Tjärnö Marine Biological Laboratory). 1999.

53. Bell FJ. Catalogue of the British Echinoderms in the British Museum (Natural History). London; 1892.

54. Grieg JA. Echinodermata. Report of the Second Norwegian Arctic Expedition in the “Fram”, 1898–1902. 1907;2: 1–28.

55. Murray J, Hjort J. The Depths of the Ocean. London: Mackmillan & Co; 1912.

56. Hofsten N. Die Echinodermen des Eisfjords. Zoologische Ergebnisse der Schwedischen Expedition nach Spitzbergen 1908. K Sven vetensk akad handl. 1915;54: 1–282.

57. Schorygin AA. Die Echinodermen des Barentsmeeres. Trudy Plovychego Morskogo Instituta. 1928;3: 1–131.

58. Lieberkind I. Echinoderma. Zool Faroes. 1929;3: 1–20.

59. Harvey R, Gage JD, Billett DSM, Clark AM, Paterson GLJ. Echinoderms of the Rockall Trough and adjacent areas. 3. Additional records. Bull Br Mus Nat Hist Zool. 1988;54: 153–198.

60. Haedrich RL, Maunder JE. The echinoderm fauna of the Newfoundland continental slope. In: Keegan BF and O’Connor BDS, editors. Echinodermata. Proceedings of the fifth international Echinodermata conference, Galway 24–29 September 1984. Rotterdam: AA Balkema; 1984. pp. 37–46.

61. Einarsson H. Echinoderma. In: Fridriksson A, Tuxen SL, editors. The Zoology of Iceland Vol 4. Copenhagen and Reykjavik: Ejnar Munksgaard; 1948.

62. Jones DOB, Bett BJ, Tyler PA. Megabenthic ecology of the deep Faroe-Shetland channel: A photographic study. Deep Sea Res 1. 2007;54: 1111–1128.

63. Turrell WR, Slesser G, Adams RD, Payne R, Gilibrand PA. Decadal variability in the composition of Faroe Shetland Channel bottom water. Deep-Sea Res 1. 1999;46: 1–25 doi: 10.1016/S0967-0637(98)00067-3

64. Stewart PI, Pocklington P, Cunjak RA. Distribution, Abundance and Diversity of Benthic Macroinvertebrates on the Canadian Continental Shelf and Slope of Southern Davis Strait and Ungava Bay. Arctic. 1985;38: 281–291.

65. Anisimova NA. Distributional pattern of Echinoderms in the Eurasian Sector of the Arctic Ocean. In: Herman Y, editor. The Arctic Seas, Climatology, Oceanography, Geology, and Biology. New York: Van Nostrand Reinhold; 1989. pp. 281–301.

66. Copley JTP, Tyler PA, Sheader M, Murton BJ, German CR. Megafauna from sublittoral to abyssal depths along the Mid-Atlantic Ridge south of Iceland. Oceanol Acta (0399–1784) (Gauthier-Villars). 1996;19: 549–559.

67. Howell KI, Billett DSM, Tyler PA. Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep-Sea Res 1. 2002;49: 1901–1920.

68. Gebruk AV, Budaeva NE, King NJ. Bathyal benthic fauna of the Mid-Atlantic Ridge between the Azores and the Reykjanes Ridge. J Mar Biol Assoc UK. 2010;90: 1–14.

69. Apellöf A. Int. Congr Zool Graz. Jena: G Fisher; 1912.

70. Franz DR, Worley EK, Merrill AS. Distribution patterns of common seastars of the middle atlantic continental shelf of the northwest atlantic (Gulf of Maine to Cape Hatteras). Biol Bull. 1981;160: 394–418.

71. Gage JD. The benthic fauna of the Rockall Trough: regional distribution and bathymetrical zonation. Proc Soc Edinb. 1986;88: 159–174.

72. Sanders HL, Hessler RR. Ecology of the deep-sea benthos. Science. 1969;163: 1419–1424. doi: 10.1126/science.163.3874.1419 5773106

73. Jamieson A. The Hadal zone. Life in the Deepest Oceans. Cambridge: Cambridge University Press; 2015. pp 243–244.

74. France SC, Kocher TD. Geographic and bathymetric patterns of mitochondrial 16S rRNA sequence divergence among deep-sea amphipods, Eurythenes gryllus. Marin Biol. 1996;126: 633–643.

75. Wilson GDF, Hessler RR. Speciation in the deep sea. A Rev Ecol Syst.1987;18: 185–207.

76. France SC. Genetic population structure and gene flow among deep–sea amphipods, Abyssorchomene spp., from six California continental borderland basins. Mar Biol. 1994;118: 67–77.

77. Palumbi SR. Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst. 1994;25: 547–572.

78. Korcheck K. Variation in temperature tolerance in a widely invasive Bryozoan species complex (Watersipora spp.). M.Sc. Thesis, The Faculty of Humboldt State University. 2015.

79. Grieg JA. Remarks on the Age of some Arctic and North-Atlantic Starfishes. Ann Mag Nat Hist. 1919;3: 400–408.

80. Koehler R. Echinodermes provenants des campagnes du yacht U Hirondelle u´Res. camp sci Monaco, Fasc. XXXIV. 1909. pp. 34:57.

81. Fisher WK. Asteroidea. Discovery Rep. 1940;20: 69–306.

82. Clark HL. The distribution and derivation of some New England echinoderms. Amer Nat. 1923;57: 229–237.

83. Brandt JF. Prodromus descriptionis animalum ab H. Mertensio observatorum. Petropoli; 1835.

84. Dupont A, Lundve B, Thorndyke M. Near Future Ocean Acidification Increases Growth Rate of the Lecithotrophic Larvae and Juveniles of the Sea Star Crossaster papposus. J Exp Zool (Mol Dev Evol). 2010;314B: 382–389.

85. Hernroth B, Baden S, Thorndyke M, Dupont S. Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat Toxicol. 2011;103: 222–224. doi: 10.1016/j.aquatox.2011.03.001 21473849

86. Gale KS, Gilkinson K, Hamel JF, Mercier A. Patterns and drivers of asteroid abundances and assemblages on the continental margin of Atlantic Canada. Mar Ecol. 2014;36: 734–752.

87. Scholz J, Hoeksema BW, Pawson DL, Ruthensteiner B. Ludwig Döderlein (1855–1936): Some aspects of his life, research, and legacy. Spixiana. 2012;35: 177–191.

88. Birk MH, Blicher ME, Garm A. Deep-sea starfish from the Arctic have well-developed eyes in the dark. Proc R Soc B. 2018;285: 20172743. doi: 10.1098/rspb.2017.2743 29436504


Článok vyšiel v časopise

PLOS One


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa