Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients


Autoři: Marie Lecronier aff001;  Parvine Tashk aff001;  Yanis Tamzali aff002;  Olivier Tenaillon aff001;  Erick Denamur aff001;  Benoit Barrou aff002;  Judith Aron-Wisnewsky aff004;  Jérôme Tourret aff001
Působiště autorů: INSERM, IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France aff001;  AP-HP, Département d’Urologie, Néphrologie et Transplantation, GH Pitié-Salpêtrière Charles Foix, Paris, France aff002;  AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France aff003;  Sorbonne Université, Paris, France aff004;  AP-HP, Institute of Cardiometabolism and Nutrition, ICAN, Service de nutrition, GH Pitié-Salpêtrière Charles Foix, Paris, France aff005;  INSERM, UMR_S U1166, équipe NutriOmics, Paris, France aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227373

Souhrn

Background

The gut dysbiosis associated with diabetes acquired before or after kidney transplantation (KT) has not been explored.

Methods

Patients transplanted at our institution provided fecal samples before, and 3–9 months after KT. Fecal bacterial DNA was extracted and 9 bacteria or bacterial groups were quantified by qPCR.

Results

50 patients (19 controls without diabetes, 15 who developed New Onset Diabetes After Transplantation, NODAT, and 16 with type 2 diabetes before KT) were included. Before KT, Lactobacillus sp. tended to be less frequently detected in controls than in those who would become diabetic following KT (NODAT) and in initially diabetic patients (60%, 87.5%, and 100%, respectively, p = 0.08). The relative abundance of Faecalibacterium prausnitzii was 30 times lower in initially diabetic patients than in controls (p = 0.002). The relative abundance of F. prausnitzii of NODAT patients was statistically indistinguishable from controls and from diabetic patients. The relative abundance of Lactobacillus sp. increased following KT in NODAT and in initially diabetic patients (20-fold, p = 0.06, and 25-fold, p = 0.02, respectively). In contrast, the proportion of Akkermansia muciniphila decreased following KT in NODAT and in initially diabetic patients (2,500-fold, p = 0.04, and 50,000-fold, p<0.0001, respectively). The proportion of Lactobacillus and A. muciniphila did not change in controls between before and after the transplantation. Consequently, after KT the relative abundance of Lactobacillus sp. was 25 times higher (p = 0.07) and the relative abundance of A. muciniphila was 2,000 times lower (p = 0.002) in diabetics than in controls.

Conclusion

An alteration of the gut microbiota composition involving Lactobacillus sp., A. muciniphila and F. prausnitzii is associated with the glycemic status in KT recipients, raising the question of their role in the genesis of NODAT.

Klíčová slova:

Bacteria – Diabetes mellitus – Gut bacteria – HbA1c – Lactobacillus – Microbiome – Obesity – Renal transplantation


Zdroje

1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi: 10.1038/nature11450 23023125.

2. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. doi: 10.1038/nature07540 19043404; PubMed Central PMCID: PMC2677729.

3. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5. doi: 10.1073/pnas.0504978102 16033867; PubMed Central PMCID: PMC1176910.

4. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6. doi: 10.1038/nature12506 23985870.

5. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8. doi: 10.1038/nature12480 23985875.

6. Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68(1):70–82. Epub 2018/06/15. doi: 10.1136/gutjnl-2018-316103 29899081.

7. Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O, Fouhy F, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59(12):1635–42. doi: 10.1136/gut.2010.215665 20926643.

8. Hippe B, Remely M, Aumueller E, Pointner A, Magnet U, Haslberger AG. Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Beneficial microbes. 2016;7(4):511–7. Epub 2016/04/07. doi: 10.3920/BM2015.0075 27048834.

9. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. doi: 10.1126/science.1208344 21885731; PubMed Central PMCID: PMC3368382.

10. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. doi: 10.1038/4441022a 17183309.

11. Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol. 2010;61(1):69–78. doi: 10.1007/s00284-010-9582-9 20087741.

12. Remely M, Hippe B, Zanner J, Aumueller E, Brath H, Haslberger AG. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocrine, metabolic & immune disorders drug targets. 2016. Epub 2016/09/01. doi: 10.2174/1871530316666160831093813 27577947.

13. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57. doi: 10.2337/db10-0253 20876719; PubMed Central PMCID: PMC2992765.

14. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103. doi: 10.1136/gut.2008.165886 19240062; PubMed Central PMCID: PMC2702831.

15. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86. doi: 10.2337/db11-0227 21933985; PubMed Central PMCID: PMC3198091.

16. Everard A, Lazarevic V, Gaia N, Johansson M, Stahlman M, Backhed F, et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014;8(10):2116–30. doi: 10.1038/ismej.2014.45 24694712; PubMed Central PMCID: PMC4163056.

17. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13. doi: 10.1038/nm.4236 27892954.

18. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–36. doi: 10.1136/gutjnl-2014-308778 26100928.

19. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. doi: 10.1073/pnas.0407076101 15505215; PubMed Central PMCID: PMC524219.

20. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27(1):73–83. doi: 10.1016/j.bpg.2013.03.007 23768554.

21. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63(9):1513–21. Epub 2014/05/17. doi: 10.1136/gutjnl-2014-306928 24833634.

22. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. doi: 10.1038/nature11552 22972297.

23. Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611–9 e6. Epub 2017/10/06. doi: 10.1016/j.cmet.2017.09.008 28978426.

24. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7. doi: 10.1053/j.gastro.2012.06.031 22728514.

25. Luan FL, Samaniego M. Transplantation in diabetic kidney failure patients: modalities, outcomes, and clinical management. Semin Dial. 2010;23(2):198–205. doi: 10.1111/j.1525-139X.2010.00708.x 20374550.

26. Palepu S, Prasad GV. New-onset diabetes mellitus after kidney transplantation: Current status and future directions. World J Diabetes. 2015;6(3):445–55. doi: 10.4239/wjd.v6.i3.445 25897355; PubMed Central PMCID: PMC4398901.

27. Hecking M, Werzowa J, Haidinger M, Horl WH, Pascual J, Budde K, et al. Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol Dial Transplant. 2013;28(3):550–66. doi: 10.1093/ndt/gfs583 23328712; PubMed Central PMCID: PMC4375396.

28. Wissing KM, Pipeleers L. Obesity, metabolic syndrome and diabetes mellitus after renal transplantation: prevention and treatment. Transplantation reviews (Orlando, Fla). 2014;28(2):37–46. Epub 2014/02/11. doi: 10.1016/j.trre.2013.12.004 24507957.

29. Curtis JR, Westfall AO, Allison J, Bijlsma JW, Freeman A, George V, et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis and rheumatism. 2006;55(3):420–6. Epub 2006/06/02. doi: 10.1002/art.21984 16739208.

30. Boots JM, van Duijnhoven EM, Christiaans MH, Wolffenbuttel BH, van Hooff JP. Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J Am Soc Nephrol. 2002;13(1):221–7. Epub 2001/12/26. 11752041.

31. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol. 2008;19(7):1411–8. Epub 2008/04/04. doi: 10.1681/ASN.2007111202 18385422; PubMed Central PMCID: PMC2440303.

32. Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83(6):1010–6. doi: 10.1038/ki.2012.440 23325079.

33. Yoshifuji A, Wakino S, Irie J, Tajima T, Hasegawa K, Kanda T, et al. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transpl. 2016;31(3):401–12. doi: 10.1093/ndt/gfv353 WOS:000371521400011. 26487672

34. Tourret J, Willing BP, Dion S, MacPherson J, Denamur E, Finlay BB. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation. 2017;101(1):74–82. doi: 10.1097/TP.0000000000001492 27681266.

35. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–s27. Epub 2017/12/10. doi: 10.2337/dc18-S002 29222373.

36. Thomas V, Clark J, Dore J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 2015;10(9):1485–504. doi: 10.2217/fmb.15.87 26347019.

37. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108. doi: 10.1371/journal.pone.0071108 24013136; PubMed Central PMCID: PMC3754967.

38. Yassour M, Lim MY, Yun HS, Tickle TL, Sung J, Song YM, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med. 2016;8(1):17. doi: 10.1186/s13073-016-0271-6 26884067; PubMed Central PMCID: PMC4756455.

39. Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert opinion on drug metabolism & toxicology. 2016;12(1):31–40. Epub 2015/11/17. doi: 10.1517/17425255.2016.1121234 26569070.

40. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Manneras-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8. Epub 2017/05/23. doi: 10.1038/nm.4345 28530702.


Článok vyšiel v časopise

PLOS One


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Význam nutraceutik u kardiovaskulárních onemocnění
nový kurz
Autori:

Faktory ovlivňující léčbu levotyroxinem

Kurz originály vs. generika

Autori: MUDr. Petr Výborný, CSc., FEBO

Autori: MUDr. Jiří Horažďovský, Ph.D

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa