Dense carbon-nanotube coating scaffolds stimulate osteogenic differentiation of mesenchymal stem cells

Autoři: Hideki Mori aff001;  Yuko Ogura aff002;  Kenta Enomoto aff002;  Masayuki Hara aff001;  Gjertrud Maurstad aff003;  Bjørn Torger Stokke aff003;  Shinichi Kitamura aff002
Působiště autorů: Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan aff001;  Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan aff002;  Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim, Norway aff003;  Center for Research and Development of Bioresources, Osaka Prefecture University, Sakai, Japan aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0225589


Carbon nanotubes (CNTs) have desirable mechanical properties for use as biomaterials in orthopedic and dental area such as bone- and tooth- substitutes. Here, we demonstrate that a glass surface densely coated with single-walled carbon nanotubes (SWNTs) stimulate the osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs). MSCs incubated on SWNT- and multi-walled carbon nanotube (MWNT)-coated glass showed high activities of alkaline phosphatase that are markers for early stage osteogenic differentiation. Expression of Bmp2, Runx2, and Alpl of MSCs showed high level in the early stage for MSC incubation on SWNT- and MWNT-coated surfaces, but only the cells on the SWNT-coated glass showed high expression levels of Bglap (Osteocalcin). The cells on the SWNT-coated glass also contained the most calcium, and their calcium deposits had long needle-shaped crystals. SWNT coating at high density could be part of a new scaffold for bone regeneration.

Klíčová slova:

Carbon nanotubes – Cell differentiation – Coatings – Glass – Mesenchymal stem cells – Osteoblast differentiation – Osteoblasts – Laboratory glassware


1. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381: 678–680. doi: 10.1038/381678a0

2. Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277: 1971–1975. doi: 10.1126/science.277.5334.1971

3. Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. 2009;61: 1097–1114. doi: 10.1016/j.addr.2009.07.010 19647768

4. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344–353. doi: 10.1016/j.biomaterials.2006.07.044 16934866

5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143–147. doi: 10.1126/science.284.5411.143 10102814

6. Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 2015; 6: 55. doi: 10.1186/s13287-015-0066-5 25884704

7. Infante A, Rodríguez CI. Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res Ther. 2018; 9: 244. doi: 10.1186/s13287-018-0995-x 30257716

8. Kanematsu D., Shofuda T., Yamamoto A., Ban C., Ueda T., Yamasaki M., et al. Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation. 2011;82(2): 77–88. doi: 10.1016/j.diff.2011.05.010 21684674

9. Spina A, Montella R, Liccardo D, De Rosa A, Laino L, Mitsiadis TA, et al. NZ-GMP approved serum improve hDPSC osteogenic commitment and increase angiogenic factor expression. Front Physiol. 2016;7: 354. doi: 10.3389/fphys.2016.00354 27594842

10. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9): 17986–18001. doi: 10.3390/ijms140917986 24005862

11. Stellavato A, La Noce M, Corsuto L, Pirozzi AVA, De Rosa M, Papaccio G, et al. Hybrid complexes of high and low molecular weight hyaluronans highly enhance HAWCs differentiation: Implication for facial bioremodeling. Cell Physiol Biochem. 2017;44: 1078–1092. doi: 10.1159/000485414 29179206

12. Lee J-R, Ryu S, Kim S, Kim B-S. Behaviors of stem cells on carbon nanotube. Biomater Res. 2015;19: 3. doi: 10.1186/s40824-014-0024-9 26331074

13. Zhang F, Cui J, Liu X, Lv B, Liu X, Xie Z, et al. Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Res Ther. 2015;6: 195. doi: 10.1186/s13287-015-0187-x 26446137

14. Ding S, Kingshott P, Tissen H, Pera M, Wang P-Y. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng. 2017;114(2): 260–280 doi: 10.1002/bit.26075 27531179

15. La Noce M, Mele L, Laino L, Iolascon G, Pieretti G, Papaccio G, et al. Cytoplasmic interactions between the glucocorticoid receptor and HDAC2 regulate osteocalcin expression in VPA-treated MSCs. Cells. 2019;8: 217. doi: 10.3390/cells8030217 30841579

16. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 2003;300: 775–778. doi: 10.1126/science.1080848 12730595

17. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2: 338–342. doi: 10.1038/nmat877 12692536

18. Star A, Steuerman DW, Heath JR, Stoddart JF. Starched carbon nanotubes. Angew Chem Int Ed Engl. 2002;41: 2508–2512. doi: 10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A 12203517

19. Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6: 562–567. doi: 10.1021/nl051861e 16522063

20. Zhang B, Chen Q, Tang H, Xie Q, Ma M, Tan L, et al. Characterization of and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B Biointerfaces. 2010;80: 18–25. doi: 10.1016/j.colsurfb.2010.05.023 20542415

21. Tasis D, Tagmatarchis N, Georgakilas V, Prato M. Soluble carbon nanotubes. Chemistry. 2003;9: 4000–4008. doi: 10.1002/chem.200304800 12953186

22. Liu D, Yi C, Zhang D, Zhang J, Yang M. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano. 2010;4: 2185–2195. doi: 10.1021/nn901479w 20218664

23. Mu Q, Du G, Chen T, Zhang B, Yan B. Suppression of human bone morphogenetic protein signaling by carboxylated single-walled carbon nanotubes. ACS Nano. 2009;3: 1139–1144. doi: 10.1021/nn900252j 19402638

24. Mooney E, Dockery P, Greiser U, Murphy M, Barron V. Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett. 2008;8: 2137–2143. doi: 10.1021/nl073300o 18624387

25. Kitamura S, Terada Y, Takaha T, Ikeda M, Morimoto Y, Kubozaki N. Aqueous composition for conductive coating. Patent WO 2007/.083771 A1.

26. Yamakawa A, Suzuki S, Oku T, Enomoto K, Ikeda M, Rodrigue J, et al. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. Carbohydr Polym. 2017;171:129–135. doi: 10.1016/j.carbpol.2017.05.012 28578946

27. Liberio MS, Sadowski MC, Soekmadji C, Davis RA, Nelson CC. Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior. Plos One;9(11): e112122. doi: 10.1371/journal.pone.0112122 25375165

28. Kotobuki N, Kawagoe D, Nomura D, Katou Y, Muraki K, Fujimori H, et al. Observation and quantitative analysis of rat bone marrow stromal cells cultured in vitro on newly formed transparent beta-tricalcium phosphate. J Mater Sci Mater Med. 2006;17:33–41. doi: 10.1007/s10856-006-6327-1 16389470

29. Takitoh T, Bessho M, Hirose M, Ogushi H, Mori H, Hara M. Gamma-cross-linked nonfibrillar collagen gel as a scaffold for osteogenic differentiation of mesenchymal stem cells. J Biosci Bioeng. 2015;119:217–25. doi: 10.1016/j.jbiosc.2014.07.008 25176637

30. Takitoh T, Kato Y, Nakasu A, Tadokoro M, Bessho M, Hirose M, et al. In vitro osteogenic differentiation of HOS cells on two types of collagen gels. J Biosci Bioeng. 2010;110:471–478. doi: 10.1016/j.jbiosc.2010.04.009 20547362

31. McGowan KB, Kurtis MS, Lottman LM, Watson D, Sah RL. Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen and Hoechst 33258. Osteoarthritis Cartilage. 2002;10:580–587. doi: 10.1053/joca.2002.0794 12127839

32. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423:349–355. doi: 10.1038/nature01660 12748654

33. Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K, et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small. 2008;4:240–246. doi: 10.1002/smll.200700670 18205152

34. Akasaka T, Yokoyama A, Matsuoka M, Hashimoto T, Watari F. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Mater Sci Eng C Mater Biol Appl. 2010;30:391–399. doi: 10.1016/j.msec.2009.12.006

35. Hu L, Hecht DS, Gruner G. Percolation in transparent and conducting carbon nanotube networks. Nano Letters. 2004;4:2513–2517. doi: 10.1021/nl048435y

36. Li X, Liu H, Niu X, Yu B, Fan Y, Feng Q, Cui F, Watari F. The use of carbon naotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials. 2012; 33: 4818–4827. doi: 10.1016/j.biomaterials.2012.03.045 22483242

37. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339:189–195. doi: 10.1007/s00441-009-0832-8 19649655

38. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–754. doi: 10.1016/s0092-8674(00)80257-3 9182762

39. Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–4891. doi: 10.1074/jbc.M111023200 11729207

40. Benoit DS, Collins SD, Anseth KS. Multifunctional hydrogels that promote osteogenic hMSC differentiation through stimulation and sequestering of BMP2. Adv Funct Mater. 2007;17:2085–2093. doi: 10.1002/adfm.200700012 18688288

41. Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science. 1983;222:330–332. doi: 10.1126/science.6623079 6623079

42. Abdallah BM, Jensen CH, Gutierrez G, Leslie RG, Jensen TG, Kassem M. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res. 2004;19:841–852. doi: 10.1359/JBMR.040118 15068508

43. Park S, Im G-I. Stem cell responses to nanotopography. J Biomed Mater Res A. 2015;103A:1238–1245. doi: 10.1002/jbm.a.35236 24853234

Článok vyšiel v časopise


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…

Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.


Nemáte účet?  Registrujte sa