Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs


Autoři: Jason L. Robinson aff001;  Laura E. McBreairty aff001;  Rebecca A. Ryan aff001;  Raniru Randunu aff001;  Carolyn J. Walsh aff002;  Gerard M. Martin aff002;  Janet A. Brunton aff001;  Robert F. Bertolo aff001
Působiště autorů: Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada aff001;  Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226806

Souhrn

The emergence of creatine as a potential cognitive enhancement supplement for humans prompted an investigation as to whether supplemental creatine could enhance spatial memory in young swine. We assessed memory performance and brain concentrations of creatine and its precursor guanidinoacetic acid (GAA) in 14-16-week-old male Yucatan miniature pigs supplemented for 2 weeks with either 200 mg/kg∙d creatine (+Cr; n = 7) or equimolar GAA (157 mg/kg∙d) (+GAA; n = 8) compared to controls (n = 14). Spatial memory tests had pigs explore distinct sets of objects for 5 min. Objects were spatially controlled, and we assessed exploration times of previously viewed objects relative to novel objects in familiar or novel locations. There was no effect of either supplementation on memory performance, but pigs successfully identified novel objects after 10 (p < 0.01) and 20 min (p < 0.01) retention intervals. Moreover, pigs recognized spatial transfers after 65 min (p < 0.05). Regression analyses identified associations between the ability to identify novel objects in memory tests and concentrations of creatine and GAA in cerebellum, and GAA in prefrontal cortex (p < 0.05). The concentration of creatine in brain regions was not influenced by creatine supplementation, but GAA supplementation increased GAA concentration in cerebellum (p < 0.05), and the prefrontal cortex of +GAA pigs had more creatine/g and less GAA/g compared to +Cr pigs (p < 0.05). Creatine kinase activity and maximal reaction velocity were also higher with GAA supplementation in prefrontal cortex (p < 0.05). In conclusion, there appears to be a relationship between memory performance and guanidino compounds in the cerebellum and prefrontal cortex, but the effects were unrelated to dietary supplementation. The cerebellum is identified as a target site for GAA accretion.

Klíčová slova:

Diet – Memory – Animal performance – Memory recall – Swine – Cerebellum – Pig models – Creatine


Zdroje

1. Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83: 367–374. doi: 10.1042/cs0830367 1327657

2. Rae C, Digney AL, McEwan SR, Bates TC. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci. 2003;270: 2147–2150. doi: 10.1098/rspb.2003.2492 14561278

3. Benton D, Donohoe R. The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br J Nutr. 2011;105: 1100–1105. doi: 10.1017/S0007114510004733 21118604

4. McMorris T, Harris RC, Swain J, Corbett J, Collard K, Dyson RJ, et al. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharm. 2006;185: 93–103. doi: 10.1007/s00213-005-0269-z 16416332

5. McMorris T, Mielcarz G, Harris RC, Swain JP, Howard A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14: 517–528. doi: 10.1080/13825580600788100 17828627

6. Gibbs ME, Shleper M, Mustafa T, Burnstock G, Bowser DN. ATP derived from astrocytes modulates memory in the chick. Neuron Glia Biol. 2012;7: 177–186. doi: 10.1017/S1740925X12000117 22874656

7. Rawson ES, Lieberman HR, Walsh TM, Zuber SM, Harhart JM, Matthews TC. Creatine supplementation does not improve cognitive function in young adults. Physiol Behav. 2008;95: 130–134. doi: 10.1016/j.physbeh.2008.05.009 18579168

8. Santos dos FS, da Silva LA, Pochapski JA, Raczenski A, da Silva WC, Grassiolli S, et al. Effects of l-arginine and creatine administration on spatial memory in rats subjected to a chronic variable stress model. Pharm Biol. 2014;52: 1033–1038. doi: 10.3109/13880209.2013.876654 24617967

9. Snow WM, Cadonic C, Cortes-Perez C, Roy Chowdhury SK, Djordjevic J, Thomson E, et al. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB. Learn Mem. 2018;25: 54–66. doi: 10.1101/lm.046284.117 29339557

10. Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion. 2017;2: CNC34. doi: 10.2217/cnc-2016-0016 30202575

11. Bender A, Klopstock T. Creatine for neuroprotection in neurodegenerative disease: end of story? Amino Acids. 2016;48: 1929–1940. doi: 10.1007/s00726-015-2165-0 26748651

12. da Silva RP, Nissim I, Brosnan ME, Brosnan JT. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab. 2009;296: E256–61. doi: 10.1152/ajpendo.90547.2008 19017728

13. Bera S, Wallimann T, Ray S, Ray M. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells. FEBS J. 2008;275: 5899–5909. doi: 10.1111/j.1742-4658.2008.06718.x 19021765

14. Tachikawa M, Ikeda S, Fujinawa J, Hirose S. γ-Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine biosynthetic precursor, in rats. PLoS ONE. 2012;7: e32557. doi: 10.1371/journal.pone.0032557 22384273

15. Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010;115: 297–313. doi: 10.1111/j.1471-4159.2010.06935.x 20796169

16. Tachikawa M, Hosoya K-I. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS. 2011;8: 13. doi: 10.1186/2045-8118-8-13 21352605

17. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and effects of creatine in the central nervous system. Brain Res Bull. 2008;76: 329–343. doi: 10.1016/j.brainresbull.2008.02.035 18502307

18. Persky AM, Brazeau GA, Hochhaus G. Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003;42: 557–574. doi: 10.2165/00003088-200342060-00005 12793840

19. Gualano B, Roschel H, Lancha AH Jr, Brightbill CE, Rawson ES. In sickness and in health: the widespread application of creatine supplementation. Amino Acids. 2012;43: 519–529. doi: 10.1007/s00726-011-1132-7 22101980

20. Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, et al. Activation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis. 2002;11: 298–307. doi: 10.1006/nbdi.2002.0547 12505422

21. Koga Y, Takahashi H, Oikawa D, Tachibana T, Denbow DM, Furuse M. Brain creatine functions to attenuate acute stress responses through GABAnergic system in chicks. Neuroscience. 2005;132: 65–71. doi: 10.1016/j.neuroscience.2005.01.004 15780467

22. Braissant O, Béard E, Torrent C, Henry H. Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Neurobiol Dis. 2010;37: 423–433. doi: 10.1016/j.nbd.2009.10.022 19879361

23. McBreairty LE, Robinson JL, Furlong KR, Brunton JA. Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in Yucatan miniature pigs. PLoS ONE. 2015;10(6):e0131563. doi: 10.1371/journal.pone.0131563 26110793

24. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev. 2007;31: 728–751. doi: 10.1016/j.neubiorev.2007.02.003 17445892

25. Pond WG, Boleman SL, Fiorotto ML, Ho H, Knabe DA, Mersmann HJ, et al. Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med. 2000;223: 102–108. doi: 10.1046/j.1525-1373.2000.22314.x 10632968

26. Roelofs S, Murphy E, Ni H, Gieling E, Nordquist RE. Judgement bias in pigs is independent of performance in a spatial holeboard task and conditional discrimination learning. Anim Cogn. 2017. doi: 10.1007/s10071-017-1095-5 28508125

27. Val-Laillet D, Besson M, Guérin S, Coquery N, Randuineau G, Kanzari A, et al. A maternal Western diet during gestation and lactation modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs. FASEB J. 2017;31: 2037–2049. doi: 10.1096/fj.201601015R 28167496

28. Gustafsson M, Jensen P, de Jonge FH, Schuurman T. Domestication effects on foraging strategies in pigs (Sus scrofa). Appl Anim Behav Sci. 1999;62: 305–317. doi: 10.1016/S0168-1591(98)00236-6

29. Kornum BR, Thygesen KS, Nielsen TR, Knudsen GM, Lind NM. The effect of the inter-phase delay interval in the spontaneous object recognition test for pigs. Behav Brain Res. 2007;181: 210–217. doi: 10.1016/j.bbr.2007.04.007 17524499

30. Kouwenberg A-L, Walsh CJ, Morgan BE, Martin GM. Episodic-like memory in crossbred Yucatan minipigs (Sus scrofa). Appl Anim Behav Sci. 2009;117: 165–172. doi: 10.1016/j.applanim.2009.01.005

31. Brosnan JT, Wijekoon EP, Warford-Woolgar L, Trottier NL, Brosnan ME, Brunton JA, et al. Creatine synthesis is a major metabolic process in neonatal piglets and has important implications for amino acid metabolism and methyl balance. J Nutr. 2009;139: 1292–1297. doi: 10.3945/jn.109.105411 19474158

32. Gordon A, Hultman E, Kaijser L, Kristjansson S, Rolf CJ, Nyquist O, et al. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res. 1995;30: 413–418. doi: 10.1016/S0008-6363(95)00062-3 7585833

33. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13: 93–110. doi: 10.1007/s10339-011-0430-z 22160349

34. Ettrup A, Kornum BR, Weikop P, Knudsen GM. An approach for serotonin depletion in pigs: effects on serotonin receptor binding. Synapse. 2011;65: 136–145. doi: 10.1002/syn.20827 20560131

35. Buchberger W, Ferdig M. Improved high-performance liquid chromatographic determination of guanidino compounds by pre-column derivatization with ninhydrin and fluorescence detection. J Sep Sci. 2004;27: 1309–1312. doi: 10.1002/jssc.200401866 15587280

36. Ostojic SM, Ostojic J, Drid P, Vranes M, Jovanov P. Dietary guanidinoacetic acid increases brain creatine levels in healthy men. Nutrition. 2017;33: 149–156. doi: 10.1016/j.nut.2016.06.001 27497517

37. Almeida LS, Verhoeven NM, Roos B, Valongo C, Cardoso ML, Vilarinho L, et al. Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab. 2004;82: 214–219. doi: 10.1016/j.ymgme.2004.05.001 15234334

38. Andreasen NC, O'Leary DS, Paradiso S, Cizadlo T, Arndt S, Watkins GL, et al. The cerebellum plays a role in conscious episodic memory retrieval. Hum Brain Mapp. 1999;8: 226–234. doi: 10.1002/(SICI)1097-0193(1999)8:4<226::AID-HBM6>3.0.CO;2–4 10619416

39. Knowlton BJ. Introduction to the special section on new ideas about cerebellar function. Behavioral Neuroscience. 2016;130: 545–546. doi: 10.1037/bne0000174 27854446

40. Zugno AI, Pereira LO, Mattos C, Scherer EB, Netto CA, Wyse AT. Guanidinoacetate administration increases acetylcholinesterase activity in striatum of rats and impairs retention of an inhibitory avoidance task. Metab Brain Dis. 2008;23: 189–198. doi: 10.1007/s11011-008-9085-6 18437545

41. Courtney SM, Petit L, Haxby JV, Ungerleider LG. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos Trans R Soc Lond B Biol Sci. 1998;353: 1819–1828. doi: 10.1098/rstb.1998.0334 9854254

42. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420: 70–74. doi: 10.1038/nature01138 12422216

43. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, et al. Creatine biosynthesis and transport in health and disease. Biochimie. 2015;119: 46–65. doi: 10.1016/j.biochi.2015.10.022 26542286

44. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21: 700–712. doi: 10.1523/JNEUROSCI.21-02-00700.2001 11160449

45. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71: 44–56. doi: 10.1111/1467-8624.00117 10836557

46. Mak CS, Waldvogel HJ, Dodd JR, Gilbert RT, Lowe MT, Birch NP, et al. Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience. 2009;163: 571–85. doi: 10.1016/j.neuroscience.2009.06.065 19580854

47. Fortin NJ, Agster KL, Eichenbaum HB. Critical role of the hippocampus in memory for sequences of events. Nat Neurosci. 2002;5: 458–462. doi: 10.1038/nn834 11976705

48. Swindle MM, Smith AC. Swine in biomedical research. In: Conn PM, editor. Sourcebook of models for biomedical research. Totowa, NJ: Humana Press; 2008. pp. 233–239. doi: 10.1007/978-1-59745-285-4_26

49. Uematsu A, Matsui M, Tanaka C, Takahashi T. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE. 2012;7: e46970. doi: 10.1371/journal.pone.0046970 23056545

50. Josselyn SA, Frankland PW. Infantile amnesia: a neurogenic hypothesis. Learn Mem. 2012;19: 423–433. doi: 10.1101/lm.021311.110 22904373

51. Almeida AS, Vieira HLA. Role of cell metabolism and mitochondrial function during adult neurogenesis. Neurochem Res. 2017;42: 1787–1794. doi: 10.1007/s11064-016-2150-3 28000162

52. Goldstein G, Allen DN, Thaler NS, Luther JF, Panchalingam K, Pettegrew JW. Developmental aspects and neurobiological correlates of working and associative memory. Neuropsychology. 2014;28: 496–505. doi: 10.1037/neu0000053 24564282

53. Rae C, Digney AL, McEwan SR, Bates TC. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci. 2003;270: 2147–2150. doi: 10.1098/rspb.2003.2492 14561278

54. Dilger RN, Bryant-Angeloni K, Payne RL, Lemme A, Parsons CM. Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poult Sci. 2012;92: 171–177. doi: 10.3382/ps.2012-02425 23243244


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa