Improvement project in higher education institutions: A BPEP-based model
Autoři:
Marco Maciel-Monteon aff001; Jorge Limon-Romero aff001; Carlos Gastelum-Acosta aff001; Yolanda Baez-Lopez aff001; Diego Tlapa aff001; Manuel Iván Rodríguez Borbón aff002
Působiště autorů:
Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México
aff001; Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227353
Souhrn
Improvement projects (IPs) are a fundamental element in any quality management system from any organization. In Higher Education Institutions (HEIs), IPs are constantly implemented to maintain excellence in academic and administrative processes. In this study, we propose a model for IP implementation that is based on the Baldrige Performance Excellence Program (BPEP). As a part of the model, we propose a series of research hypotheses to be tested. The data used to test the hypotheses were gathered from a questionnaire that was developed after an extensive literature review. The survey was administered to Mexican public HEIs, and more than 700 responses were collected. The data were assessed in terms of convergent and discriminant validity, obtaining satisfactory results. To test the proposed relationships between the model constructs, we utilized Structural Equation Modeling (SEM) using the software IBM SPSS Amos. The analysis confirmed the statistical validity of both the model and the hypotheses. In conclusion, our model for IP implementation is a useful tool for HEIs that seek to attain excellence in their processes through IPs.
Klíčová slova:
Human learning – Employment – Surveys – Mexican people – Factor analysis – Research validity – Computer software – Problem solving
Zdroje
1. Ah‐Teck JC, Starr K. Principals’ perceptions of “quality” in Mauritian schools using the Baldrige framework. J Educ Adm. 2013;51: 680–704. doi: 10.1108/JEA-02-2012-0022
2. Lavalle C, de Nicolas VL. Peru and its new challenge in higher education: Towards a research university. PLOS ONE. 2017;12: e0182631. doi: 10.1371/journal.pone.0182631 28787463
3. Sunder MV. Constructs of quality in higher education services. Int J Product Perform Manag. 2016;65: 1091–1111. doi: 10.1108/IJPPM-05-2015-0079
4. Vicencio-Ortiz JC, Kolarik WJ. The Assessment of the Impacts of Improvement Projects in the Interrelated Processes: A Cross-Case Study. Qual Manag J. 2012;19: 38–50. doi: 10.1080/10686967.2012.11918072
5. Juran JM, Gryna FM, Bingham RS. Quality Control Handbook. New York: McGraw-Hill; 1974.
6. Gonzalez Aleu F, Van Aken EM. Continuous improvement projects: an authorship bibliometric analysis. Int J Health Care Qual Assur. 2017;30: 467–476. doi: 10.1108/IJHCQA-07-2016-0105 28574324
7. Ruben BD, Russ T, Smulowitz SM, Connaughton SL. Evaluating the impact of organizational self‐assessment in higher education: The Malcolm Baldrige/Excellence in Higher Education framework. Leadersh Organ Dev J. 2007;28: 230–250. doi: 10.1108/01437730710739657
8. Badri MA, Selim H, Alshare K, Grandon EE, Younis H, Abdulla M. The Baldrige Education Criteria for Performance Excellence Framework: Empirical test and validation. Int J Qual Reliab Manag. 2006;23: 1118–1157. doi: 10.1108/02656710610704249
9. Gastelum-Acosta C, Limon-Romero J, Maciel-Monteon M, Baez-Lopez Y. Seis Sigma en Instituciones de Educación Superior en México. Inf Tecnológica. 2018;29: 91–100. doi: 10.4067/S0718-07642018000500091
10. Ramasubramanian P. Six Sigma in Educational Institutions. Int J Eng Pract Res. 2012;1: 1–5.
11. Desai DA, Shaikh AJA. Reducing failure rate at high voltage (HV) testing of insulator using Six Sigma methodology. Int J Product Perform Manag. 2018;67: 791–808. doi: 10.1108/IJPPM-11-2016-0235
12. Panwar A, Jain R, Rathore APS. Lean implementation in Indian process industries–some empirical evidence. J Manuf Technol Manag. 2015;26: 131–160. doi: 10.1108/JMTM-05-2013-0049
13. Dave Y, Sohani N. Improving productivity through Lean practices in central India-based manufacturing industries. Int J Lean Six Sigma. 2019;10: 601–621. doi: 10.1108/IJLSS-10-2017-0115
14. Goshime Y, Kitaw D, Jilcha K. Lean manufacturing as a vehicle for improving productivity and customer satisfaction: A literature review on metals and engineering industries. Int J Lean Six Sigma. 2019;10: 691–714. doi: 10.1108/IJLSS-06-2017-0063
15. Ullah F, Thaheem MJ, Siddiqui SQ, Khurshid MB. Influence of Six Sigma on project success in construction industry of Pakistan. TQM J. 2017;29: 276–309. doi: 10.1108/TQM-11-2015-0136
16. Vo B, Kongar E, Suárez Barraza MF. Kaizen event approach: a case study in the packaging industry. Int J Product Perform Manag. 2019; IJPPM-07-2018-0282. doi: 10.1108/IJPPM-07-2018-0282
17. Suárez-Barraza M, Miguel-Dávila J. Assessing the design, management and improvement of Kaizen projects in local governments. Bus Process Manag J. 2014;20: 392–411. doi: 10.1108/BPMJ-03-2013-0040
18. Lokkerbol J, Does R, de Mast J, Schoonhoven M. Improving processes in financial service organizations: where to begin? Int J Qual Reliab Manag. 2012;29: 981–999. doi: 10.1108/02656711211272881
19. Bottema MJM. Institutionalizing area-level risk management: Limitations faced by the private sector in aquaculture improvement projects. Aquaculture. 2019;512: 734310. doi: 10.1016/j.aquaculture.2019.734310
20. Molle F, Rap E, Al-Agha DE, El Hassan WA, Freeg M. Irrigation improvement projects in the Nile Delta: Promises, challenges, surprises. Agric Water Manag. 2019;216: 425–435. doi: 10.1016/j.agwat.2019.02.013
21. Gonzalez-Aleu F, Van Aken EM, Cross J, Glover WJ. Continuous improvement project within Kaizen: critical success factors in hospitals. TQM J. 2018;30: 335–355. doi: 10.1108/TQM-12-2017-0175
22. Johnson AM, Howell DM. Mobility bridges a gap in care: Findings from an early mobilisation quality improvement project in acute care. J Clin Nurs. 2019; jocn.14986. doi: 10.1111/jocn.14986 31264747
23. Laureani A, Brady M, Antony J. Applications of Lean Six Sigma in an Irish hospital. Leadersh Health Serv. 2013;26: 322–337. doi: 10.1108/LHS-01-2012-0002
24. McWilliams D, Snelson C, Goddard H, Attwood B. Introducing early and structured rehabilitation in critical care: A quality improvement project. Intensive Crit Care Nurs. 2019;53: 79–83. doi: 10.1016/j.iccn.2019.04.006 31056235
25. Antony J, Sunder M. V, Sreedharan R, Chakraborty A, Gunasekaran A. A systematic review of Lean in healthcare: a global prospective. Int J Qual Reliab Manag. 2019; IJQRM-12-2018-0346. doi: 10.1108/IJQRM-12-2018-0346
26. Bhuiyan N, Baghel A. An overview of continuous improvement: from the past to the present. Manag Decis. 2005;43: 761–771. doi: 10.1108/00251740510597761
27. Kumi S, Morrow J. Improving self service the six sigma way at Newcastle University Library. Program. 2006;40: 123–136. doi: 10.1108/00330330610669253
28. Voyles JF, Dols L, Knight E. Interlibrary Loan Meets Six Sigma: The University of Arizona Library’s Success Applying Process Improvement. J Interlibrary LoanDocument Deliv Electron Reserve. 2008;19: 75–94. doi: 10.1080/10723030802533911
29. Svensson C, Antony J, Ba-Essa M, Bakhsh M, Albliwi S. A Lean Six Sigma program in higher education. Int J Qual Reliab Manag. 2015;32: 951–969. doi: 10.1108/IJQRM-09-2014-0141
30. Antony J, Ghadge A, Ashby SA, Cudney EA. Lean Six Sigma journey in a UK higher education institute: a case study. Int J Qual Reliab Manag. 2018;35: 510–526. doi: 10.1108/IJQRM-01-2017-0005
31. Jenicke LO, Kumar A, Holmes MC. A framework for applying six sigma improvement methodology in an academic environment. TQM J. 2008;20: 453–462. doi: 10.1108/17542730810898421
32. Sunder MV, Antony J. A conceptual Lean Six Sigma framework for quality excellence in higher education institutions. Int J Qual Reliab Manag. 2018;35: 857–874. doi: 10.1108/IJQRM-01-2017-0002
33. NIST. Baldrige Excellence Framework (Education). Gaithersburg, MD: National Institute of Standards and Technology, United States Department of Commerce; 2017.
34. Meyer SM, Collier DA. An empirical test of the causal relationships in the Baldrige Health Care Pilot Criteria. J Oper Manag. 2001;19: 403–426. doi: 10.1016/S0272-6963(01)00053-5
35. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. 7th ed. Harlow: Pearson; 2014.
36. Djordjevic P, Panic M, Arsic S, Zivkovic Z. Impact of leadership on strategic planning of quality. Total Qual Manag Bus Excell. 2018; 1–15. doi: 10.1080/14783363.2018.1490176
37. Tarí JJ, Molina JF, Castejón JL. The relationship between quality management practices and their effects on quality outcomes. Eur J Oper Res. 2007;183: 483–501. doi: 10.1016/j.ejor.2006.10.016
38. Flynn BB, Saladin B. Further evidence on the validity of the theoretical models underlying the Baldrige criteria. J Oper Manag. 2001;19: 617–652. doi: 10.1016/S0272-6963(01)00072-9
39. Pannirselvam GP, Ferguson LA. A study of the relationships between the Baldrige categories. Int J Qual Reliab Manag. 2001;18: 14–37. doi: 10.1108/02656710110364468
40. Winn BA, Cameron KS. ORGANIZATIONAL QUALITY: An Examination of the Malcolm Baldrige National Quality Framework. Res High Educ. 1998;39: 491–512.
41. Peng X, Prybutok V. Relative effectiveness of the Malcolm Baldrige National Quality Award categories. Int J Prod Res. 2015;53: 629–647. doi: 10.1080/00207543.2014.961207
42. Wilson DD, Collier DA. An Empirical Investigation of the Malcolm Baldrige National Quality Award Causal Model. Decis Sci. 2000;31: 361–383. doi: 10.1111/j.1540-5915.2000.tb01627.x
43. Shahsavar T, Sudzina F. Student satisfaction and loyalty in Denmark: Application of EPSI methodology. PLOS ONE. 2017;12: e0189576. doi: 10.1371/journal.pone.0189576 29240801
44. Antony J. Readiness factors for the Lean Six Sigma journey in the higher education sector. Int J Product Perform Manag. 2014;63: 257–264. doi: 10.1108/IJPPM-04-2013-0077
45. Cudney EA, Elrod CC, Stanley SM. A systematic literature review of Six Sigma practices in education. Int J Six Sigma Compet Advant. 2014;8: 163–175. doi: 10.1504/IJSSCA.2014.067552
46. Desai DA, Antony J, Patel MB. An assessment of the critical success factors for Six Sigma implementation in Indian industries. Int J Product Perform Manag. 2012;61: 426–444. doi: 10.1108/17410401211212670
47. Furst-Bowe JA, Bauer RA. Application of the Baldrige model for innovation in higher education. New Dir High Educ. 2007;2007: 5–14. doi: 10.1002/he.242
48. Ho Y-C, Chang O-C, Wang W-B. An empirical study of key success factors for Six Sigma Green Belt projects at an Asian MRO company. J Air Transp Manag. 2008;14: 263–269. doi: 10.1016/j.jairtraman.2008.05.002
49. Holmes MC, Jenicke LO, Hempel JL. A framework for Six Sigma project selection in higher educational institutions, using a weighted scorecard approach. Qual Assur Educ. 2015;23: 30–46. doi: 10.1108/QAE-04-2014-0014
50. SEP. Sistema Educativo de los Estados Unidos Mexicanos, Principales Cifras 2016–2017. México: Dirección General de Planeación, Programación y Estadística Educativa Secretaría de Educación Pública; 2018.
51. World Medical Association. WMA—The World Medical Association-WMA Declaration of Helsinki–Ethical Principles for Medical Research Involving Human Subjects. [cited 1 May 2019]. Available: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
52. Kline RB. Principles and practice of structural equation modeling. 4th ed. New York: The Guilford Press; 2016.
53. Decarlo LT. On the meaning and use of kurtosis. Psychol Methods. 1997; 292–307.
54. Curran PJ, West SG, Finch JF. The Robustness of Test Statistics to Nonnormality and Specification Error in Confirmatory Factor Analysis. Psychol Methods. 1996;1: 16–29.
55. Mardia KV. Measures of multivariate skewness and kurtosis with applications. Biometrika. 1970;57: 519–530. doi: 10.1093/biomet/57.3.519
56. Mardia KV. Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies. Sankhyā Indian J Stat Ser B 1960–2002. 1974;36: 115–128.
57. Khine MS. Application of Structural Equation Modeling in Educational Research and Practice. Rotterdam: SensePublishers; 2013.
58. Kaiser HF, Rice J. Little Jiffy, Mark Iv. Educ Psychol Meas. 1974;34: 111–117. doi: 10.1177/001316447403400115
59. Bollen KA. Structural equations with latent variables. New York: Wiley; 1989.
60. Schumacker RE, Lomax RG. A beginner’s guide to structural equation modeling. 4th ed. New York, NY: Routledge; 2016.
61. Byrne BM. Structural equation modeling with Amos: basic concepts, applications, and programming. 3rd ed. New York: Routledge, Taylor & Francis Group; 2016.
62. Browne MW, Cudeck R. Alternative ways of assessing model fit. In: Bollen KA, Long SJ, editors. Testing structural equation models. Newbury Park, CA: Sage; 1993.
63. Khan BA, Naeem H. Measuring the impact of soft and hard quality practices on service innovation and organisational performance. Total Qual Manag Bus Excell. 2018;29: 1402–1426. doi: 10.1080/14783363.2016.1263543
64. Kharub M, Sharma R. An integrated structural model of QMPs, QMS and firm’s performance for competitive positioning in MSMEs. Total Qual Manag Bus Excell. 2018; 1–30. doi: 10.1080/14783363.2018.1427500
65. Fornell C, Larcker DF. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J Mark Res. 1981;18: 39–50. doi: 10.2307/3151312
66. Lu J, Laux C, Antony J. Lean Six Sigma leadership in higher education institutions. Int J Product Perform Manag. 2017;66: 638–650. doi: 10.1108/IJPPM-09-2016-0195
67. Mai F, Ford MW, Evans JR. An empirical investigation of the Baldrige framework using applicant scoring data. Int J Qual Reliab Manag. 2018;35: 1599–1616. doi: 10.1108/IJQRM-12-2016-0215
68. Ali HM, Musah MB. Investigation of Malaysian higher education quality culture and workforce performance. Qual Assur Educ. 2012;20: 289–309. doi: 10.1108/09684881211240330
69. Antony J, Krishan N, Cullen D, Kumar M. Lean Six Sigma for higher education institutions (HEIs): Challenges, barriers, success factors, tools/techniques. Int J Product Perform Manag. 2012;61: 940–948. doi: 10.1108/17410401211277165
70. Sáenz MJ, Revilla E, Knoppen D. Absorptive Capacity in Buyer-supplier Relationships: Empirical Evidence of Its Mediating Role. J Supply Chain Manag. 2014;50: 18–40. doi: 10.1111/jscm.12020
71. Kingir S, Mesci M. Factors that affect hotel employees motivation, the case of Bodrum. Serbian J Manag. 2010;5: 59–76.
72. Yan T, Dooley K. Buyer-Supplier Collaboration Quality in New Product Development Projects. J Supply Chain Manag. 2014;50: 59–83. doi: 10.1111/jscm.12032
73. Ramachandran DS, Chong SC, Ismail H. Organisational culture: An exploratory study comparing faculties’ perspectives within public and private universities in Malaysia. Int J Educ Manag. 2011;25: 615–634. doi: 10.1108/09513541111159086
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- 100 let s metamizolem: jaké je jeho současné postavení v léčbě bolesti
- Tramadol a paracetamol v tlumení poextrakční bolesti
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals