Design and evaluation of a laboratory-based wheelchair castor testing protocol using community data


Autoři: Anand Mhatre aff001;  Norman Reese aff002;  Jon Pearlman aff001
Působiště autorů: Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America aff001;  International Society of Wheelchair Professionals, Pittsburgh, Pennsylvania, United States of America aff002;  Engineering & Engineering Technology, LeTourneau University, Longview, Texas, United States of America aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226621

Souhrn

Wheelchair castors fail frequently causing physical, social and economic consequences for wheelchair users. These failures occur in spite of established wheelchair test methods and regulations, suggesting that the existing tests may not be sufficient to screen poorly designed castors. An expert stakeholder group, convened by the International Society of Wheelchair Professionals (ISWP), noted castor failures as a high priority and recommended that a new castor testing system should be developed. In a previous study, the effect of shock exposure on castor durability was studied. The current paper extends the previous work and focuses on the development of a castor testing protocol based on shock, corrosion and abrasion exposure data collected in the community. The testing protocol was applied to 8 different castor models tested under four conditions: shock, corrosion + shock, abrasion + shock and abrasion + corrosion + shock. For each model, a total of n = 8 samples were evaluated across the four conditions. Results demonstrate that corrosion and abrasion reduced castor durability between 13% to 100% depending on the model. Importantly, the inclusion of corrosion and abrasion resulted in changes in the failure modes for 75% of the tested models and two-thirds of the altered failure modes are associated with increased risk of injury for wheelchair users. These results suggest that corrosion and abrasion present in the community reduce castor durability, thus supporting their inclusion in the castor testing protocol and potentially other wheelchair standards.

Klíčová slova:

Equipment – Steel – Accelerometers – Material fatigue – Fog – Terrain – Wheelchairs – Corrosion


Zdroje

1. Rispin K, Riseling K, Wee J. A longitudinal study assessing the maintenance condition of cadres of four types of wheelchairs provided in low-resource areas. Disabil Rehabil Assist Technol. England; 2018 Feb;13(2):146–56. doi: 10.1080/17483107.2017.1299805 28326868

2. Toro M, Worobey L, Boninger ML, Cooper RA, Pearlman J. Type and Frequency of Reported Wheelchair Repairs and Related Adverse Consequences Among People With Spinal Cord Injury. Arch Phys Med Rehabil. W.B. Saunders; 2016 Oct;97(10):1753–60. doi: 10.1016/j.apmr.2016.03.032 27153763

3. Saha R, Dey A, Hatoj M, Podder S. Study of wheelchair operations in rural areas covered under the District Rehabilitation Centre (DRC) scheme. Indian J Disabil Rehabil. 1990;(Jul-Dec):57–87.

4. Armstrong W, Reisinger KD, Smith WK. Evaluation of CIR-whirlwind wheelchair and service provision in Afghanistan. Disabil Rehabil [Internet]. 2007 Jan [cited 2015 Mar 9];29(11–12):935–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17577728 doi: 10.1080/09638280701240615 17577728

5. Reese N, Rispin K. Assessing Wheelchair Breakdowns In Kenya To Inform Wheelchair Test Standards For Low-Resource Settings. In: RESNA Annual Conference—2015. 2015.

6. Toro ML, Garcia Y, Ojeda AM, Dausey DJ, Pearlman J. Quantitative Exploratory Evaluation of the Frequency, Causes and Consequences of Rehabilitation Wheelchair Breakdowns delivered at a Paediatric Clinic in Mexico. Disabil CBR Incl Dev [Internet]. 2012 Dec 8 [cited 2015 Jul 23];23(3):48–64. Available from: http://dcidj.org/article/view/167

7. Mukherjee G, Samanta A. Wheelchair charity: a useless benevolence in community-based rehabilitation. Disabil Rehabil [Internet]. Informa UK Ltd UK; 2005 May 20 [cited 2015 Mar 2];27(10):591–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16019868 doi: 10.1080/09638280400018387 16019868

8. Worobey L, Oyster M, Nemunaitis G, Cooper R, Boninger ML. Increases in wheelchair breakdowns, repairs, and adverse consequences for people with traumatic spinal cord injury. Am J Phys Med Rehabil [Internet]. 2012 Jun [cited 2015 Jul 28];91(6):463–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22549473 doi: 10.1097/PHM.0b013e31825ab5ec 22549473

9. Mair C. Applied internet-of things technology in the management of wheelchair maintenance at NHS WestMARC: A retrospective. In: European Seating Symposium. 2018.

10. Worobey L, Oyster M, Pearlman J, Gebrosky B, Boninger ML. Differences between manufacturers in reported power wheelchair repairs and adverse consequences among people with spinal cord injury. Arch Phys Med Rehabil [Internet]. 2014 Apr [cited 2015 Jul 28];95(4):597–603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24361786 doi: 10.1016/j.apmr.2013.11.022 24361786

11. Hogaboom NS, Worobey LA, Houlihan B V, Heinemann AW, Boninger ML. Wheelchair breakdowns are associated with pain, pressure injuries, rehospitalization, and self-perceived health in full-time wheelchair users with spinal cord injury. Arch Phys Med Rehabil. 2018;

12. Gaal RP, Rebholtz N, Hotchkiss RD, Pfaelzer PF. Wheelchair rider injuries: causes and consequences for wheelchair design and selection. J Rehabil Res Dev [Internet]. 1997 Jan [cited 2015 Jul 26];34(1):58–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9021626 9021626

13. Kirby RL, Ackroyd-Stolarz SA, Brown MG, Kirkland SA, MacLeod DA. Wheelchair-related accidents caused by tips and falls among noninstitutionalized users of manually propelled wheelchairs in Nova Scotia. Am J Phys Med Rehabil. United States; 1994;73(5):319–30. doi: 10.1097/00002060-199409000-00004 7917161

14. Kim J, Mulholland S. Seating/wheelchair technology in the developing world: need for a closer look. Vol. 11, Technology and Disability. IOS Press; 1999. p. 21–7.

15. Borg J, Lindström A, Larsson S. Assistive technology in developing countries: a review from the perspective of the Convention on the Rights of Persons with Disabilities. Prosthet Orthot Int. 2011 Mar;35(1):20–9. doi: 10.1177/0309364610389351 21515886

16. Pearlman J, Cooper RA, Krizack M, Lindsley A, Wu Y, Reisinger KD, et al. Lower-limb prostheses and wheelchairs in low-income countries. IEEE Eng Med Biol Mag [Internet]. 2008 Jan [cited 2015 Jul 26];27(2):12–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18463017 doi: 10.1109/EMB.2007.907372 18463017

17. Hotchkiss R. Independence through Mobility: A guide through the manufacture of the ATI-Hotchkiss Wheelchair. 1985.

18. Toro ML, Eke C, Pearlman J. The impact of the World Health Organization 8-steps in wheelchair service provision in wheelchair users in a less resourced setting: a cohort study in Indonesia. BMC Health Serv Res. 2016;16(1):26.

19. Mhatre A, Ott J, Pearlman J. Development of wheelchair caster testing equipment and preliminary testing of caster models. African J Disabil. AOSIS; 2017 Sep;6:358.

20. Gaal RP, Rebholtz N, Hotchkiss RD, Pfaelzer PF. Wheelchair rider injuries: causes and consequences for wheelchair design and selection. J Rehabil Res Dev. 1997 Jan;34(1):58–71. 9021626

21. Toro ML, Garcia Y, Ojeda AM, Dausey DJ, Pearlman J. Quantitative Exploratory Evaluation of the Frequency, Causes and Consequences of Rehabilitation Wheelchair Breakdowns delivered at a Paediatric Clinic in Mexico. Disabil CBR Incl Dev. 2012 Dec;23(3):48–64.

22. Toro Hernandez ML. Development, Implementation, and Dissemination of a Wheelchair Maintenance Training Program. University of Pittsburgh; 2016.

23. Cooper RA, Robertson RN, Lawrence B, Heil T, Albright SJ, VanSickle DP, et al. Life-cycle analysis of depot versus rehabilitation manual wheelchairs. J Rehabil Res Dev [Internet]. 1996 Feb [cited 2015 May 13];33(1):45–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8868417 8868417

24. Cooper RA, Gonzalez J, Lawrence B, Renschler A, Boninger ML, VanSickle DP. Performance of selected lightweight wheelchairs on ANSI/RESNA tests. American National Standards Institute-Rehabilitation Engineering and Assistive Technology Society of North America. Arch Phys Med Rehabil [Internet]. 1997 Oct [cited 2015 Feb 18];78(10):1138–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9339166 doi: 10.1016/s0003-9993(97)90141-6 9339166

25. Cooper RA, Boninger ML, Rentschler A. Evaluation of selected ultralight manual wheelchairs using ANSI/RESNA standards. Arch Phys Med Rehabil [Internet]. 1999 Apr [cited 2015 Feb 18];80(4):462–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10206612 doi: 10.1016/s0003-9993(99)90287-3 10206612

26. Cooper R, Stewart K, VanSickle D, Albright S, Robertson R, Flannery M, et al. Manual Wheelchair ISO-ANSI/RESNA Fatigue Testing Experience. In: Proceedings of the RESNA ‘94 Annual Conference. Nashville, TN; 1994. p. 324–6.

27. Fitzgerald SG, Yoest LM, Cooper RA. Comparison of Laboratory and Actual Fatigue Life for Three Types of Manual Wheelchairs. In: Proceedings of the RESNA 2001 Annual Conference. Reno, NV; 2001. p. 352–4.

28. Gebrosky B, Pearlman J, Cooper RA, Cooper R, Kelleher A. Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards. J Rehabil Res Dev [Internet]. Rehabilitation Research and Development Service; 2013 Jan [cited 2015 Feb 20];50(10):1373–89. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84896344453&partnerID=tZOtx3y1 doi: 10.1682/JRRD.2012.08.0155 24699973

29. Liu H, Cooper RRA, Pearlman J, Cooper RRA, Connor S, Boninger ML, et al. Evaluation of titanium ultralight manual wheelchairs using ANSI/ RESNA standards. Arch Phys Med Rehabil [Internet]. 1999 Jan [cited 2015 Feb 18];45(4):1251–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10206612

30. Liu H, Pearlman J, Cooper R, Hong E, Wang H, Salatin B, et al. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards. J Rehabil Res Dev [Internet]. 2010 Jan [cited 2015 Feb 18];47(5):441–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20803388 doi: 10.1682/jrrd.2009.08.0137 20803388

31. Comparison of a manual wheelchair designed and produced in Mexico to a wheelchair produced in China based on ISO testing and clinician and user feedback [Internet]. [cited 2015 Mar 23]. Available from: http://www.resna.org/sites/default/files/legacy/conference/proceedings/2013/WheeledMobility/Student Scientific/Toro.html

32. Wang H, Liu H-Y, Pearlman J, Cooper RRA, Jefferds A, Connor S, et al. Relationship between wheelchair durability and wheelchair type and years of test. Disabil Rehabil Assist Technol [Internet]. Informa UK Ltd London, UK; 2010 Jan;5(5):318–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20131972 doi: 10.3109/17483100903391137 20131972

33. Zipfel E, Cooper RA, Pearlman J, Cooper R, McCartney M. New design and development of a manual wheelchair for India. Disabil Rehabil. 2007 Jan;29(11–12):949–62. doi: 10.1080/09638280701240672 17577729

34. Rentschler AJ, Cooper RA, Boninger ML, Fitzgerald SG. Using Stability and Fatigue Strength Testing When Choosing a Manual Wheelchair. In: Proceedings of the RESNA 2001 Annual Conference. Reno, NV; 2001. p. 355–7.

35. Kwarciak AM, Cooper RA, Ammer WA, Fitzgerald SG, Boninger ML, Cooper R. Fatigue testing of selected suspension manual wheelchairs using ANSI/RESNA standards. Arch Phys Med Rehabil [Internet]. 2005 Jan [cited 2015 Feb 18];86(1):123–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15641002 doi: 10.1016/j.apmr.2003.11.038 15641002

36. United States Agency for International Development. United States Agency for International Development. 2016. doi: 10.1242/dev.135285

37. World Health Organization. Global Cooperation on Assistive Technology (GATE). 2014.

38. Pearlman J, Cooper R. Editorial. African J Disabil. 2017 Jan;6(0):3.

39. United Nations. Convention on the Rights of Persons with Disabilities. 2006.

40. Borg J, Khasnabis C. WHO Guidelines on the provision of manual wheelchairs in less-resourced settings. Disabil Rehabil [Internet]. World Health Organization; 2008 [cited 2015 Jul 21]; Available from: http://www.who.int/disabilities/publications/technology/wheelchairguidelines/en/#.Va2cj8BW0ok.mendeley

41. Mhatre A, Martin D, McCambridge M, Reese N, Sullivan M, Schoendorfer D, et al. Developing product quality standards for wheelchairs used in less-resourced environments. African J Disabil. 2017 Jan;6(0):15 pages.

42. International Organization for Standardization. ISO—ISO Standards—ISO/TC 173/SC 1—Wheelchairs [Internet]. 2014 [cited 2015 Mar 9]. Available from: http://www.iso.org/iso/home/standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=53792

43. ISO Technical Committee 173 SubCommittee 1 Working Group 1. ISO/AWI 7176–32—Weelchair—Part 32: Standard Practice for Wheelchair Castor Durability Testing [Internet]. 2019 [cited 2019 Apr 23]. Available from: https://www.iso.org/standard/77566.html

44. Cooper R, Star J, Heil T. Development of a new ISO wheelchair two-drum tester. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991. IEEE; 1991. p. 1867–8.

45. International Organization for Standardization. ISO—ISO Standards—ISO/TC 173/SC 1—Wheelchairs. 2014.

46. Partners for Care. Partners for Care | Delivering health and hope in East Africa [Internet]. 2019 [cited 2019 Apr 23]. Available from: https://www.partnersforcare.org/

47. Gulf Coast Data Concepts L. GCDC X16-1D Usb-Accelerometer 3-axis Data Recorder. 2016.

48. ASTM International. ASTM B117 [Internet]. 2016. Available from: https://www.astm.org/Standards/B117.htm

49. ASTM International. ASTM G1–03(2017)e1 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens [Internet]. 2017 [cited 2019 Mar 31]. Available from: https://www.astm.org/Standards/G1

50. Auto Technology Company. Auto Technology Salt Fog Cabinet.

51. Mhatre A, Pearlman JL, Lachell S. Development, reliability, and piloting of a wheelchair caster failure inspection tool (C-FIT). Disabil Rehabil Assist Technol [Internet]. 2018; Available from: https://doi.org/10.1080/17483107.2018.1554714

52. Pearlman J, Brienza D, Mhatre A, Ott J. Use of Performance Standards in Wheelchair Selection. In: International Seating Symposium 2019 [Internet]. 2019. Available from: https://www.seatingsymposium.us/event-schedule/event/3

53. Tolerico ML, Ding D, Cooper RA, Spaeth DM, Fitzgerald SG, Cooper R, et al. Assessing mobility characteristics and activity levels of manual wheelchair users. J Rehabil Res Dev [Internet]. 2007 Jan [cited 2015 Feb 18];44(4):561–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18247253 doi: 10.1682/jrrd.2006.02.0017 18247253

54. Ma Y, Li Y, Wang F. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment. Corros Sci. Elsevier; 2010;52(5):1796–800.

55. Natesan M, Venkatachari G, Palaniswamy N. Corrosivity and durability maps of India. Corros Prev Control. Beaconsfield [etc.] Scientific Surveys Ltd.; 2005;52(2):43–55.

56. Mohan PS, Natesan M, Sundaram M, Balakrishnan K. Atmospheric corrosion at different locations in South India. Bull Electrochem. Central Electrochemical Research Institute; 1996;12(1):91–2.

57. Syed S. Atmospheric corrosion of hot and cold rolled carbon steel under field exposure in Saudi Arabia. Corros Sci. Elsevier; 2008;50(6):1779–84.

58. Dean SW, Delgadillo GH-D, Bushman JB. Marine corrosion in tropical environments. In ASTM; 2000.

59. Castaño JG, Botero CA, Restrepo AH, Agudelo EA, Correa E, Echeverría F. Atmospheric corrosion of carbon steel in Colombia. Corros Sci. Elsevier; 2010;52(1):216–23.

60. Morales J, Martin-Krijer S, Díaz F, Hernández-Borges J, González S. Atmospheric corrosion in subtropical areas: influences of time of wetness and deficiency of the ISO 9223 norm. Corros Sci. Elsevier; 2005;47(8).

61. Houska C. Metals for Corrosion Resistance. The Construction Specifier. Alexandria, VA; 2000.

62. Karuu S. The study of the effects of some Kenyan soils on the corrosion of the underground pipes [Internet]. 1989. Available from: http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/21932

63. Mukherjee G, Samanta A. Wheelchair charity: a useless benevolence in community-based rehabilitation. Disabil Rehabil. Informa UK Ltd UK; 2005 May;27(10):591–6. doi: 10.1080/09638280400018387 16019868

64. Liu H, Pearlman J, Cooper R, Hong E, Wang H, Salatin B, et al. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards. J Rehabil Res Dev. 2010 Jan;47(5):441–55. doi: 10.1682/jrrd.2009.08.0137 20803388

65. Cooper RA, Boninger ML, Rentschler A. Evaluation of selected ultralight manual wheelchairs using ANSI/RESNA standards. Arch Phys Med Rehabil. 1999 Apr;80(4):462–7. doi: 10.1016/s0003-9993(99)90287-3 10206612

66. Gebrosky B, Pearlman J, Cooper RA, Cooper R, Kelleher A. Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards. J Rehabil Res Dev. Rehabilitation Research and Development Service; 2013 Jan;50(10):1373–89. doi: 10.1682/JRRD.2012.08.0155 24699973

67. Kwarciak AM, Cooper RA, Ammer WA, Fitzgerald SG, Boninger ML, Cooper R. Fatigue testing of selected suspension manual wheelchairs using ANSI/RESNA standards. Arch Phys Med Rehabil. 2005 Jan;86(1):123–9. doi: 10.1016/j.apmr.2003.11.038 15641002

68. Mhatre A. Development and validation of a wheelchair caster testing protocol [Internet]. 2018 [cited 2018 Sep 10]. Available from: http://d-scholarship.pitt.edu/33876/

69. Sullivan M, Pearlman J, Mhatre A, Martin D, McCambridge M. Design Considerations for Wheelchairs used in Adverse Conditions. 2016.


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa