Effects of CK2β subunit down-regulation on Akt signalling in HK-2 renal cells


Autoři: Estefania Alcaraz aff001;  Jordi Vilardell aff001;  Christian Borgo aff002;  Eduard Sarró aff003;  Maria Plana aff001;  Oriano Marin aff002;  Lorenzo A. Pinna aff002;  José R. Bayascas aff006;  Anna Meseguer aff003;  Mauro Salvi aff002;  Emilio Itarte aff001;  Maria Ruzzene aff002
Působiště autorů: Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain aff001;  Department of Biomedical Sciences, University of Padova, Padova, Italy aff002;  Fisiopatología Renal, CIBBIM-Nanomedicine, VHIR, Barcelona, Spain aff003;  Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Barcelona, Spain aff004;  CNR Neuroscience Institute, Padova, Italy aff005;  Departament de Bioquimica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain aff006;  Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain aff007;  Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, Madrid, Spain aff008
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0227340

Souhrn

The PI3K/Akt pathway is interconnected to protein kinase CK2, which directly phosphorylates Akt1 at S129. We have previously found that, in HK-2 renal cells, downregulation of the CK2 regulatory subunit β (shCK2β cells) reduces S129 Akt phosphorylation. Here, we investigated in more details how the different CK2 isoforms impact on Akt and other signaling pathways.

We found that all CK2 isoforms phosphorylate S129 in vitro, independently of CK2β. However, in HK-2 cells the dependence on CK2β was confirmed by rescue experiments (CK2β re-expression in shCK2β HK-2 cells), suggesting the presence of additional components that drive Akt recognition by CK2 in cells. We also found that CK2β downregulation altered the phosphorylation ratio between the two canonical Akt activation sites (pT308 strongly reduced, pS473 slightly increased) in HK-2 cells. Similar results were found in other cell lines where CK2β was stably knocked out by CRISPR-Cas9 technology. The phosphorylation of rpS6 S235/S236, a downstream effector of Akt, was strongly reduced in shCK2β HK-2 cells, while the phosphorylation of two Akt direct targets, PRAS40 T246 and GSK3β S9, was increased. Differently to what observed in response to CK2β down-regulation, the chemical inhibition of CK2 activity by cell treatment with the specific inhibitor CX-4945 reduced both the Akt canonical sites, pT308 and pS473. In CX-4945-treated cells, the changes in rpS6 pS235/S236 and GSK3β pS9 mirrored those induced by CK2β knock-down (reduction and slight increase, respectively); on the contrary, the effect on PRAS40 pT246 phosphorylation was sharply different, being strongly reduced by CK2 inhibition; this suggests that this Akt target might be dependent on Akt pS473 status in HK-2 cells.

Since PI3K/Akt and ERK1/2/p90rsk pathways are known to be interconnected and both modulated by CK2, with GSK3β pS9 representing a convergent point, we investigated if ERK1/2/p90rsk signaling was affected by CK2β knock-down and CX-4945 treatment in HK-2 cells. We found that p90rsk was insensitive to any kind of CK2 targeting; therefore, the observation that, similarly, GSK3β pS9 was not reduced by CK2 blockade suggests that GSK3β phosphorylation is mainly under the control of p90rsk in these cells. However, we found that the PI3K inhibitor LY294002 reduced GSK3β pS9, and concomitantly decreased Snail1 levels (a GSK3β target and Epithelial-to-Mesenchymal transition marker). The effects of LY294002 were observed also in CK2β-downregulated cells, suggesting that reducing GSK3β pS9 could be a strategy to control Snail1 levels in any situation where CK2β is defective, as possibly occurring in cancer cells.

Klíčová slova:

AKT signaling cascade – Cell signaling – Phosphatases – Phosphorylation – Protein extraction – Protein kinase signaling cascade – Protein kinases – Small interfering RNAs


Zdroje

1. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. The Biochemical journal. 2003;369: 1–15. doi: 10.1042/BJ20021469 12396231

2. Bischoff N, Olsen B, Raaf J, Bretner M, Issinger O-G, Niefind K. Structure of the human protein kinase CK2 catalytic subunit CK2α’ and interaction thermodynamics with the regulatory subunit CK2β. J Mol Biol. 2011;407: 1–12. doi: 10.1016/j.jmb.2011.01.020 21241709

3. Lolli G, Pinna L a., Battistutta R. Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chemical Biology. 2012;7: 1158–1163. doi: 10.1021/cb300054n 22506723

4. Lolli G, Ranchio A, Battistutta R. Active form of the protein kinase CK2 α2β2 holoenzyme is a strong complex with symmetric architecture. ACS Chem Biol. 2014;9: 366–371. doi: 10.1021/cb400771y 24175891

5. Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger OG. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun. 1994;202: 141–147. doi: 10.1006/bbrc.1994.1904 8037705

6. Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna LA, et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene. 2007;26: 6915–6926. doi: 10.1038/sj.onc.1210495 17486073

7. Vilardell J, Alcaraz E, Sarró E, Trilla E, Cuadros T, Morote J, et al. Under-expression of CK2β subunit in ccRCC represents a complementary biomarker of p-STAT3 Ser727 that correlates with patient survival. Oncotarget. 2018;9: 5736–5751. doi: 10.18632/oncotarget.23422 29464030

8. Landesman-Bollag E, Belkina A, Hovey B, Connors E, Cox C, Seldin DC. Developmental and growth defects in mice with combined deficiency of CK2 catalytic genes. Mol Cell Biochem. 2011;356: 227–231. doi: 10.1007/s11010-011-0967-2 21769451

9. Bibby AC, Litchfield DW. The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci. 2005;1: 67–79. doi: 10.7150/ijbs.1.67 15951851

10. Arrigoni G, Pagano MA, Sarno S, Cesaro L, James P, Pinna LA. Mass spectrometry analysis of a protein kinase CK2beta subunit interactome isolated from mouse brain by affinity chromatography. J Proteome Res. 2008;7: 990–1000. doi: 10.1021/pr070500s 18220339

11. Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cellular and Molecular Life Sciences. 2015. doi: 10.1007/s00018-015-1929-8 25990538

12. Ruzzene M, Pinna LA. Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta. 2010;1804: 499–504. doi: 10.1016/j.bbapap.2009.07.018 19665589

13. Hériché JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM, Goldberg Y. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 1997;276: 952–955. doi: 10.1126/science.276.5314.952 9139659

14. Olsen BB, Svenstrup TH, Guerra B. Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. International Journal of Oncology. 2012;41: 1967–1976. doi: 10.3892/ijo.2012.1635 23007634

15. Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul. 2017;64: 1–8. doi: 10.1016/j.jbior.2017.03.002 28373060

16. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 2005;12: 668–677. doi: 10.1038/sj.cdd.4401604 15818404

17. Di Maira G, Brustolon F, Pinna LA, Ruzzene M. Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells. Cell Mol Life Sci. 2009;66: 3363–3373. doi: 10.1007/s00018-009-0108-1 19662498

18. Girardi C, James P, Zanin S, Pinna LA, Ruzzene M. Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions. Biochim Biophys Acta. 2014;1843: 1865–1874. doi: 10.1016/j.bbamcr.2014.04.020 24769357

19. Vilardell J, Girardi C, Marin O, Cozza G, Pinna LA, Ruzzene M. The importance of negative determinants as modulators of CK2 targeting. The lesson of Akt2 S131. PLoS ONE. 2018;13: e0193479. doi: 10.1371/journal.pone.0193479 29494643

20. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. Journal of Biological Chemistry. 2001;276: 993–998. doi: 10.1074/jbc.M009134200 11035045

21. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA. PD-1 Increases PTEN Phosphatase Activity While Decreasing PTEN Protein Stability by Inhibiting Casein Kinase 2. Molecular and Cellular Biology. 2013;33: 3091–3098. doi: 10.1128/MCB.00319-13 23732914

22. Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169: 381–405. doi: 10.1016/j.cell.2017.04.001 28431241

23. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30: 203–213. doi: 10.1016/j.molcel.2008.02.024 18439899

24. Zhou X, Cordon-Barris L, Zurashvili T, Bayascas JR. Fine-tuning the intensity of the PKB/Akt signal enables diverse physiological responses. Cell Cycle. 2014;13: 3164–3168. doi: 10.4161/15384101.2014.962954 25485494

25. Vincent EE, Elder DJE, Thomas EC, Phillips L, Morgan C, Pawade J, et al. Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. British journal of cancer. 2011;104: 1755–61. doi: 10.1038/bjc.2011.132 21505451

26. Yung HW, Charnock-Jones DS, Burton GJ. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE. 2011;6. doi: 10.1371/journal.pone.0017894 21445305

27. Moore SF, Hunter RW, Hers I. mTORC2 protein-mediated protein kinase B (Akt) serine 473 phosphorylation is not required for Akt1 activity in human platelets. Journal of Biological Chemistry. 2011;286: 24553–24560. doi: 10.1074/jbc.M110.202341 21592956

28. Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 2001;359: 1–16. doi: 10.1042/0264-6021:3590001 11563964

29. Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci. 2011;4: 40. doi: 10.3389/fnmol.2011.00040 22110425

30. Britten CD. PI3K and MEK inhibitor combinations: Examining the evidence in selected tumor types. Cancer Chemotherapy and Pharmacology. 2013;71: 1395–1409. doi: 10.1007/s00280-013-2121-1 23443307

31. Xu R, Won J-Y, Kim C-H, Kim D-E, Yim H. Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. J Oncol. 2019;2019: 5810465. doi: 10.1155/2019/5810465 31275381

32. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Combes F, Vandenbrouck Y, et al. Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene. 2012;32: 1373–83. doi: 10.1038/onc.2012.165 22562247

33. Borgo C, Franchin C, Cesaro L, Zaramella S, Arrigoni G, Salvi M, et al. A proteomics analysis of CK2β(-/-) C2C12 cells provides novel insights into the biological functions of the non-catalytic β subunit. FEBS J. 2019;286: 1561–1575. doi: 10.1111/febs.14799 30834696

34. Nastainczyk W, Issinger O-G, Guerra B. Epitope analysis of the MAb 1AD9 antibody detection site in human protein kinase CK2alpha-subunit. Hybrid Hybridomics. 2003;22: 87–90. doi: 10.1089/153685903321948003 12831533

35. Llorens F, Roher N, Miró F a, Sarno S, Ruiz FX, Meggio F, et al. Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: effects on CK2alpha activity. The Biochemical journal. 2003;375: 623–631. doi: 10.1042/BJ20030915 12901717

36. Ruzzene M, Di Maira G, Tosoni K, Pinna LA. Assessment of CK2 constitutive activity in cancer cells. Meth Enzymol. 2010;484: 495–514. doi: 10.1016/B978-0-12-381298-8.00024-1 21036247

37. Borgo C, Franchin C, Scalco S, Bosello-Travain V, Donella-Deana A, Arrigoni G, et al. Generation and quantitative proteomics analysis of CK2α/α’(-/-) cells. Scientific Reports. 2017;7: 1–13. doi: 10.1038/s41598-016-0028-x

38. Pinna L a. Protein kinase CK2: a challenge to canons. Journal of cell science. 2002;115: 3873–3878. doi: 10.1242/jcs.00074 12244125

39. Poletto G, Vilardell J, Marin O, Pagano MA, Cozza G, Sarno S, et al. The regulatory beta subunit of protein kinase CK2 contributes to the recognition of the substrate consensus sequence. A study with an eIF2 beta-derived peptide. Biochemistry. 2008;47: 8317–8325. doi: 10.1021/bi800216d 18636746

40. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 2010;70: 10288–10298. doi: 10.1158/0008-5472.CAN-10-1893 21159648

41. Zanin S, Sandre M, Cozza G, Ottaviani D, Marin O, Pinna LA, et al. Chimeric peptides as modulators of CK2-dependent signaling: Mechanism of action and off-target effects. Biochim Biophys Acta. 2015;1854: 1694–1707. doi: 10.1016/j.bbapap.2015.04.026 25936516

42. Borgo C, Cesaro L, Salizzato V, Ruzzene M, Massimino ML, Pinna LA, et al. Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: biochemical evidence and therapeutic perspectives. Mol Oncol. 2013;7: 1103–1115. doi: 10.1016/j.molonc.2013.08.006 24012109

43. Gibson SA, Yang W, Yan Z, Liu Y, Rowse AL, Weinmann AS, et al. Protein Kinase CK2 Controls the Fate between Th17 Cell and Regulatory T Cell Differentiation. J Immunol. 2017;198: 4244–4254. doi: 10.4049/jimmunol.1601912 28468969

44. Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, et al. Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res. 2013;19: 6484–6494. doi: 10.1158/1078-0432.CCR-13-0265 24036851

45. Zakharia K, Miyabe K, Wang Y, Wu D, Moser CD, Borad MJ, et al. Preclinical In Vitro and In Vivo Evidence of an Antitumor Effect of CX-4945, a Casein Kinase II Inhibitor, in Cholangiocarcinoma. Transl Oncol. 2019;12: 143–153. doi: 10.1016/j.tranon.2018.09.005 30316146

46. Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frödin M. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem. 1999;274: 27168–27176. doi: 10.1074/jbc.274.38.27168 10480933

47. Frödin M, Jensen CJ, Merienne K, Gammeltoft S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 2000;19: 2924–2934. doi: 10.1093/emboj/19.12.2924 10856237

48. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282: 14056–14064. doi: 10.1074/jbc.M700906200 17360704

49. Lan A, Qi Y, Du J. Akt2 mediates TGF-β1-induced epithelial to mesenchymal transition by deactivating GSK3β/snail signaling pathway in renal tubular epithelial cells. Cell Physiol Biochem. 2014;34: 368–382. doi: 10.1159/000363006 25059120

50. Pinna LA. Protein kinase CK2: a challenge to canons. J Cell Sci. 2002;115: 3873–3878. doi: 10.1242/jcs.00074 12244125

51. Salvi M, Sarno S, Marin O, Meggio F, Itarte E, Pinna LA. Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett. 2006;580: 3948–3952. doi: 10.1016/j.febslet.2006.06.031 16806200

52. Franchin C, Borgo C, Cesaro L, Zaramella S, Vilardell J, Salvi M, et al. Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells. Cell Mol Life Sci. 2018;75: 2011–2026. doi: 10.1007/s00018-017-2705-8 29119230

53. Ortega CE, Seidner Y, Dominguez I. Mining CK2 in cancer. PLoS ONE. 2014;9: e115609. doi: 10.1371/journal.pone.0115609 25541719

54. Chua MMJ, Lee M, Dominguez I. Cancer-type dependent expression of CK2 transcripts. PLoS ONE. 2017;12: e0188854. doi: 10.1371/journal.pone.0188854 29206231

55. Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O, et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol. 2013;15: 1340–1350. doi: 10.1038/ncb2860 24161930

56. Fernández-Sáiz V, Targosz B-S, Lemeer S, Eichner R, Langer C, Bullinger L, et al. SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat Cell Biol. 2013;15: 72–81. doi: 10.1038/ncb2651 23263282

57. Bayascas JR, Wullschleger S, Sakamoto K, García-Martínez JM, Clacher C, Komander D, et al. Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol. 2008;28: 3258–3272. doi: 10.1128/MCB.02032-07 18347057

58. Yung HW, Charnock-Jones DS, Burton GJ. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE. 2011;6: e17894. doi: 10.1371/journal.pone.0017894 21445305

59. Pal R, Bondar VV, Adamski CJ, Rodney GG, Sardiello M. Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis. Sci Rep. 2017;7: 1–10. doi: 10.1038/s41598-016-0028-x

60. Ding Q, Xia W, Liu J-C, Yang J-Y, Lee D-F, Xia J, et al. Erk Associates with and Primes GSK-3β for Its Inactivation Resulting in Upregulation of β-Catenin. Molecular Cell. 2005;19: 159–170. doi: 10.1016/j.molcel.2005.06.009 16039586

61. Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci. 2015;72: 3305–3322. doi: 10.1007/s00018-015-1929-8 25990538


Článok vyšiel v časopise

PLOS One


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa