#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment


Proper maintenance of telomeres is essential for maintaining genomic stability, and genomic instability caused by dysfunctional telomeres could lead to accumulation of mutations that may drive tumor formation. Telomere dysfunction has also been linked to premature aging caused by depletion of stem cells. Therefore, it is important to understand how cells ensure proper maintenance of telomeres. Mammalian cells and fission yeast cells utilize an evolutionarily conserved multi-subunit telomere protection complex called shelterin to ensure protection against telomere fusions by DNA repair factors and cell cycle arrest by DNA damage checkpoint kinases. However, previous studies have not yet fully established how protein-protein interactions within the shelterin complex contribute to the regulation of DNA damage checkpoint signaling and telomerase recruitment. By utilizing separation of function mutations that specifically disrupt either Tpz1-Ccq1 or Tpz1-Poz1 interaction within the fission yeast shelterin, we establish that Tpz1-Ccq1 interaction is essential for phosphorylation of Ccq1 by the DNA damage checkpoint kinases Rad3ATR and Tel1ATM that is needed for telomerase recruitment to telomeres, while Tpz1-Poz1 interaction prevents Ccq1 phosphorylation by promoting Poz1 association with telomeres. These findings thus establish for the first time how protein-protein interactions within the shelterin complex modulate checkpoint kinase-dependent phosphorylation essential for telomerase recruitment.


Vyšlo v časopise: Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004708
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004708

Souhrn

Proper maintenance of telomeres is essential for maintaining genomic stability, and genomic instability caused by dysfunctional telomeres could lead to accumulation of mutations that may drive tumor formation. Telomere dysfunction has also been linked to premature aging caused by depletion of stem cells. Therefore, it is important to understand how cells ensure proper maintenance of telomeres. Mammalian cells and fission yeast cells utilize an evolutionarily conserved multi-subunit telomere protection complex called shelterin to ensure protection against telomere fusions by DNA repair factors and cell cycle arrest by DNA damage checkpoint kinases. However, previous studies have not yet fully established how protein-protein interactions within the shelterin complex contribute to the regulation of DNA damage checkpoint signaling and telomerase recruitment. By utilizing separation of function mutations that specifically disrupt either Tpz1-Ccq1 or Tpz1-Poz1 interaction within the fission yeast shelterin, we establish that Tpz1-Ccq1 interaction is essential for phosphorylation of Ccq1 by the DNA damage checkpoint kinases Rad3ATR and Tel1ATM that is needed for telomerase recruitment to telomeres, while Tpz1-Poz1 interaction prevents Ccq1 phosphorylation by promoting Poz1 association with telomeres. These findings thus establish for the first time how protein-protein interactions within the shelterin complex modulate checkpoint kinase-dependent phosphorylation essential for telomerase recruitment.


Zdroje

1. PalmW, de LangeT (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334.

2. GilsonE, GeliV (2007) How telomeres are replicated. Nat Rev Mol Cell Biol 8: 825–838.

3. VerdunRE, KarlsederJ (2007) Replication and protection of telomeres. Nature 447: 924–931.

4. NakamuraTM, MorinGB, ChapmanKB, WeinrichSL, AndrewsWH, et al. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.

5. NugentCI, LundbladV (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev 12: 1073–1085.

6. LeonardiJ, BoxJA, BunchJT, BaumannP (2008) TER1, the RNA subunit of fission yeast telomerase. Nat Struct Mol Biol 15: 26–33.

7. FengJ, FunkWD, WangSS, WeinrichSL, AvilionAA, et al. (1995) The RNA component of human telomerase. Science 269: 1236–1241.

8. LingnerJ, CechTR, HughesTR, LundbladV (1997) Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A 94: 11190–11195.

9. WeinrichSL, PruzanR, MaL, OuelletteM, TesmerVM, et al. (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17: 498–502.

10. ChanA, BouleJB, ZakianVA (2008) Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet 4: e1000236.

11. BeerninkHT, MillerK, DeshpandeA, BucherP, CooperJP (2003) Telomere maintenance in fission yeast requires an Est1 ortholog. Curr Biol 13: 575–580.

12. MoserBA, ChangYT, KostiJ, NakamuraTM (2011) Tel1ATM and Rad3ATR kinases promote Ccq1-Est1 interaction to maintain telomeres in fission yeast. Nat Struct Mol Biol 18: 1408–1413.

13. O'ConnorMS, SafariA, XinH, LiuD, SongyangZ (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci U S A 103: 11874–11879.

14. VerdunRE, CrabbeL, HaggblomC, KarlsederJ (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20: 551–561.

15. YeJZ, DonigianJR, van OverbeekM, LoayzaD, LuoY, et al. (2004) TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279: 47264–47271.

16. TakaiKK, HooperS, BlackwoodS, GandhiR, de LangeT (2010) In vivo stoichiometry of shelterin components. J Biol Chem 285: 1457–1467.

17. SmogorzewskaA, de LangeT (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73: 177–208.

18. HoughtalingBR, CuttonaroL, ChangW, SmithS (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14: 1621–1631.

19. LiuD, SafariA, O'ConnorMS, ChanDW, LaegelerA, et al. (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6: 673–680.

20. YeJZ, HockemeyerD, KrutchinskyAN, LoayzaD, HooperSM, et al. (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18: 1649–1654.

21. XinH, LiuD, WanM, SafariA, KimH, et al. (2007) TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445: 559–562.

22. NandakumarJ, BellCF, WeidenfeldI, ZaugAJ, LeinwandLA, et al. (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492: 285–289.

23. ZhongFL, BatistaLF, FreundA, PechMF, VenteicherAS, et al. (2012) TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150: 481–494.

24. AbreuE, AritonovskaE, ReichenbachP, CristofariG, CulpB, et al. (2010) TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30: 2971–2982.

25. TejeraAM, Stagno d'AlcontresM, ThanasoulaM, MarionRM, MartinezP, et al. (2010) TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev Cell 18: 775–789.

26. DenchiEL, de LangeT (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448: 1068–1071.

27. SfeirA, de LangeT (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336: 593–597.

28. GuoX, DengY, LinY, Cosme-BlancoW, ChanS, et al. (2007) Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J 26: 4709–4719.

29. ArmaniosM, BlackburnEH (2012) The telomere syndromes. Nat Rev Genet 13: 693–704.

30. LansdorpPM (2009) Telomeres and disease. EMBO J 28: 2532–2540.

31. MiyoshiT, KanohJ, SaitoM, IshikawaF (2008) Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320: 1341–1344.

32. MoserBA, NakamuraTM (2009) Protection and replication of telomeres in fission yeast. Biochem Cell Biol 87: 747–758.

33. BaumannP, CechTR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292: 1171–1175.

34. PittCW, CooperJP (2010) Pot1 inactivation leads to rampant telomere resection and loss in one cell cycle. Nucleic Acids Res 38: 6968–6975.

35. MoserBA, SubramanianL, ChangYT, NoguchiC, NoguchiE, et al. (2009) Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 28: 810–820.

36. ChangYT, MoserBA, NakamuraTM (2013) Fission yeast shelterin regulates DNA Polymerases and Rad3ATR kinase to limit telomere extension. PLoS Genet 9: e1003936.

37. CooperJP, NimmoER, AllshireRC, CechTR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744–747.

38. KanohJ, IshikawaF (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624–1630.

39. ChikashigeY, HiraokaY (2001) Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr Biol 11: 1618–1623.

40. SugiyamaT, CamHP, SugiyamaR, NomaK, ZofallM, et al. (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128: 491–504.

41. TomitaK, CooperJP (2008) Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. Genes Dev 22: 3461–3474.

42. FujitaI, TanakaM, KanohJ (2012) Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe. PLoS One 7: e49151.

43. JunHI, LiuJ, JeongH, KimJK, QiaoF (2013) Tpz1 controls a telomerase-nonextendible telomeric state and coordinates switching to an extendible state via Ccq1. Genes Dev 27: 1917–1931.

44. RhindN, ChenZ, YassourM, ThompsonDA, HaasBJ, et al. (2011) Comparative Functional Genomics of the Fission Yeasts. Science 332: 930–936.

45. SubramanianL, MoserBA, NakamuraTM (2008) Recombination-based telomere maintenance is dependent on Tel1-MRN and Rap1 and inhibited by telomerase, Taz1, and Ku in fission yeast. Mol Cell Biol 28: 1443–1455.

46. LundbladV, BlackburnEH (1993) An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73: 347–360.

47. TengSC, ZakianVA (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083–8093.

48. NimmoER, PidouxAL, PerryPE, AllshireRC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392: 825–828.

49. MoserBA, SubramanianL, KhairL, ChangYT, NakamuraTM (2009) Fission yeast Tel1ATM and Rad3ATR promote telomere protection and telomerase recruitment. PLoS Genet 5: e1000622.

50. YamazakiH, TarumotoY, IshikawaF (2012) Tel1ATM and Rad3ATR phosphorylate the telomere protein Ccq1 to recruit telomerase and elongate telomeres in fission yeast. Genes Dev 26: 241–246.

51. JainD, HebdenAK, NakamuraTM, MillerKM, CooperJP (2010) HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467: 223–227.

52. McNeesCJ, TejeraAM, MartinezP, MurgaM, MuleroF, et al. (2010) ATR suppresses telomere fragility and recombination but is dispensable for elongation of short telomeres by telomerase. J Cell Biol 188: 639–652.

53. HandeMP, BalajeeAS, TchirkovA, Wynshaw-BorisA, LansdorpPM (2001) Extra-chromosomal telomeric DNA in cells from Atm(−/−) mice and patients with ataxia-telangiectasia. Hum Mol Genet 10: 519–528.

54. MetcalfeJA, ParkhillJ, CampbellL, StaceyM, BiggsP, et al. (1996) Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 13: 350–353.

55. VerdunRE, KarlsederJ (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127: 709–720.

56. ZhaoY, SfeirAJ, ZouY, BusemanCM, ChowTT, et al. (2009) Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138: 463–475.

57. WangF, StewartJA, KasbekC, ZhaoY, WrightWE, et al. (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2: 1096–1103.

58. WuP, TakaiH, de LangeT (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150: 39–52.

59. KimSH, DavalosAR, HeoSJ, RodierF, ZouY, et al. (2008) Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J Cell Biol 181: 447–460.

60. TakaiKK, KibeT, DonigianJR, FrescasD, de LangeT (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44: 647–659.

61. SfeirA, KosiyatrakulST, HockemeyerD, MacRaeSL, KarlsederJ, et al. (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138: 90–103.

62. MillerKM, RogO, CooperJP (2006) Semi-conservative DNA replication through telomeres requires Taz1. Nature 440: 824–828.

63. Alfa C, Fantes P, Hyams J, McLoed M, Warbrick E (1993) Experiments with fission yeast. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

64. Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

65. KhairL, SubramanianL, MoserBA, NakamuraTM (2010) Roles of heterochromatin and telomere proteins in regulation of fission yeast telomere recombination and telomerase recruitment. J Biol Chem 285: 5327–5337.

66. WebbCJ, ZakianVA (2008) Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat Struct Mol Biol 15: 34–42.

67. Lopez-GironaA, TanakaK, ChenXB, BaberBA, McGowanCH, et al. (2001) Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. Proc Natl Acad Sci U S A 98: 11289–11294.

68. BählerJ, WuJQ, LongtineMS, ShahNG, McKenzieA3rd, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951.

69. NakamuraTM, MoserBA, RussellP (2002) Telomere binding of checkpoint sensor and DNA repair proteins contributes to maintenance of functional fission yeast telomeres. Genetics 161: 1437–1452.

70. MoserBA, ChangYT, NakamuraTM (2014) Telomere regulation during the cell cycle in fission yeast. Methods Mol Biol 1170: 411–424.

71. KanohJ, SadaieM, UranoT, IshikawaF (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15: 1808–1819.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#