#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

POT1a and Components of CST Engage Telomerase and Regulate Its Activity in


Telomeres are required to stabilize the ends of linear chromosomes, and thus ensure genome integrity. Telomeric DNA is maintained though the action of both conventional and non-conventional DNA replication mechanisms. To ensure that chromosome ends are fully protected and fully replicated, telomeres dynamically oscillate between a closed (non-extendable) and an open (extendable) conformation throughout the cell cycle. The telomerase reverse transcriptase engages telomeres when they are in an extendable conformation. How this conversion occurs, how telomerase is recruited to the chromosome terminus and how telomerase action is terminated are unanswered questions. Here we provide evidence that POT1a, a telomerase accessory protein from the flowering plant Arabidopsis, helps to convert the telomere into a telomerase-extendable state through dynamic interactions with a critical telomere binding protein complex, and through stimulation of telomerase enzyme activity. The results of this study provide new insight into the regulation of telomeric DNA replication.


Vyšlo v časopise: POT1a and Components of CST Engage Telomerase and Regulate Its Activity in. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004738
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004738

Souhrn

Telomeres are required to stabilize the ends of linear chromosomes, and thus ensure genome integrity. Telomeric DNA is maintained though the action of both conventional and non-conventional DNA replication mechanisms. To ensure that chromosome ends are fully protected and fully replicated, telomeres dynamically oscillate between a closed (non-extendable) and an open (extendable) conformation throughout the cell cycle. The telomerase reverse transcriptase engages telomeres when they are in an extendable conformation. How this conversion occurs, how telomerase is recruited to the chromosome terminus and how telomerase action is terminated are unanswered questions. Here we provide evidence that POT1a, a telomerase accessory protein from the flowering plant Arabidopsis, helps to convert the telomere into a telomerase-extendable state through dynamic interactions with a critical telomere binding protein complex, and through stimulation of telomerase enzyme activity. The results of this study provide new insight into the regulation of telomeric DNA replication.


Zdroje

1. PalmW, de LangeT (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334.

2. de LangeT (2009) How telomeres solve the end-protection problem. Science 326: 948–952.

3. JainD, CooperJP (2010) Telomeric strategies: means to an end. Annu Rev Genet, Vol 44 44: 243–269.

4. PriceCM, BoltzKA, ChaikenMF, StewartJA, BeilsteinMA, et al. (2010) Evolution of CST function in telomere maintenance. Cell Cycle 9: 3157–3165.

5. BlackburnEH (2000) Telomere states and cell fates. Nature 408: 53–56.

6. TeixeiraMT, ArnericM, SperisenP, LingnerJ (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323–335.

7. QiH, ZakianVA (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14: 1777–1788.

8. MoserBA, SubramanianL, ChangYT, NoguchiC, NoguchiE, et al. (2009) Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 28: 810–820.

9. DaiX, HuangC, BhusariA, SampathiS, SchubertK, et al. (2010) Molecular steps of G-overhang generation at human telomeres and its function in chromosome end protection. EMBO J 29: 2788–2801.

10. GaoH, CervantesRB, MandellEK, OteroJH, LundbladV (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14: 208–214.

11. SunJ, YuEY, YangY, ConferLA, SunSH, et al. (2009) Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres. Genes Dev 23: 2900–2914.

12. Mitton-FryRM, AndersonEM, TheobaldDL, GlustromLW, WuttkeDS (2004) Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J Mol Biol 338: 241–255.

13. GarvikB, CarsonM, HartwellL (1995) Single-stranded-DNA arising at telomeres in Cdc13 mutants may constitute a specificsignal for the Rad9 checkpoint. Mol Cell Biol 15: 6128–6138.

14. NugentCI, HughesTR, LueNF, LundbladV (1996) Cdc13p: A single-strand telomeric DNA binding protein with a dual role in yeast telomere maintenance. Science 274: 249–252.

15. GrandinN, DamonC, CharbonneauM (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20: 1173–1183.

16. GrandinN, ReedSI, CharbonneauM (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11: 512–527.

17. PennockE, BuckleyK, LundbladV (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104: 387–396.

18. HolsteinEM, ClarkKR, LydallD (2014) Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep 7: 1259–1269.

19. LiS, MakovetsS, MatsuguchiT, BlethrowJD, ShokatKM, et al. (2009) Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136: 50–61.

20. LiuCC, GopalakrishnanV, PoonLF, YanT, LiS (2014) Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 Complex for telomere replication. Mol and Cell Biol 34: 57–70.

21. LinJJ, ZakianVA (1995) An in-vitro assay for saccharomyces telomerase requires Est1. Cell 81: 1127–1135.

22. SteinerBR, HidakaK, FutcherB (1996) Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci U S A 93: 2817–2821.

23. EvansSK, LundbladV (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286: 117–120.

24. WuY, ZakianVA (2011) The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro. Proc Natl Acad Sci U S A 108: 20362–20369.

25. LundbladV, SzostakJW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.

26. TaggartAKP, TengSC, ZakianVA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297: 1023–1026.

27. DeZwaanDC, FreemanBC (2009) The conserved Est1 protein stimulates telomerase DNA extension activity. Proc Natl Acad Sci U S A 106: 17337–17342.

28. BaumannP, CechTR (2001) Pot1 the putative telomere end-binding protein in fission yeast and humans (vol 292, pg 1171, 2001). Science 293: 214–214.

29. NandakumarJ, CechTR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14: 69–82.

30. LeiM, PodellER, CechTR (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11: 1223–1229.

31. LeiM, ZaugAJ, PodellER, CechTR (2005) Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem 280: 20449–20456.

32. WangF, PodellER, ZaugAJ, YangYT, BaciuP, et al. (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445: 506–510.

33. XinHW, LiuD, WanM, SafariA, KimH, et al. (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445: 559–562.

34. LatrickCM, CechTR (2010) POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J 29: 924–933.

35. ZaugAJ, PodellER, NandakumarJ, CechTR (2010) Functional interaction between telomere protein TPP1 and telomerase. Genes Dev 24: 613–622.

36. NandakumarJ, BellCF, WeidenfeldI, ZaugAJ, LeinwandLA, et al. (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492: 285–289.

37. ZhangY, ChenLY, HanX, XieW, KimH, et al. (2013) Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci U S A 110: 5457–5462.

38. SongXY, LeehyK, WarringtonRT, LambJC, SurovtsevaYV, et al. (2008) STN1 protects chromosome ends in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105: 19815–19820.

39. SurovtsevaYV, ChurikovD, BoltzKA, SongXY, LambJC, et al. (2009) Conserved Telomere Maintenance Component 1 Interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 36: 207–218.

40. MiyakeY, NakamuraM, NabetaniA, ShimamuraS, TamuraM, et al. (2009) RPA-like Mammalian Ctc1-Stn1-Ten1 Complex Binds to Single-Stranded DNA and Protects Telomeres Independently of the Pot1 Pathway. Mol Cell 36: 193–206.

41. LeehyKA, LeeJR, SongX, RenfrewKB, ShippenDE (2013) MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis. Plant Cell 25: 1343–1354.

42. StewartJA, WangF, ChaikenMF, KasbekC, ChastainPD, et al. (2012) Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 31: 3537–3549.

43. GuPL, MinJN, WangY, HuangCH, PengT, et al. (2012) CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J 31: 2309–2321.

44. KasbekC, WangF, PriceCM (2013) Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J Biol Chem 288: 30139–30150.

45. WangF, StewartJA, KasbekC, ZhaoY, WrightWE, et al. (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2: 1096–1103.

46. ChenLY, RedonS, LingnerJ (2012) The human CST complex is a terminator of telomerase activity. Nature 488: 540–544.

47. WuP, TakaiH, de LangeT (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150: 39–52.

48. LoayzaD, de LangeT (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423: 1013–1018.

49. JunHI, LiuJQ, JeongH, KimJK, QiaoF (2013) Tpz1 controls a telomerase-nonextendible telomeric state and coordinates switching to an extendible state via Ccq1. Genes Dev 27: 1917–1931.

50. GargM, GurungRL, MansoubiS, AhmedJO, DaveA, et al. (2014) Tpz1TPP1 SUMOylation reveals evolutionary conservation of SUMO-dependent Stn1 telomere association. EMBO Rep (8): 871–7.

51. MiyagawaK, LowRS, SantosaV, TsujiH, MoserBA, et al. (2014) SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1(Tpp1) to modulate shelterin-Stn1 interaction in fission yeast. Proc Natl Acad Sci U S A 111: 5950–5955.

52. HashimuraY, UeguchiC (2011) The Arabidopsis MERISTEM DISORGANIZATION 1 gene is required for the maintenance of stem cells through the reduction of DNA damage. Plant J 68: 657–669.

53. Cifuentes-RojasC, KannanK, TsengL, ShippenDE (2011) Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc Natl Acad Sci U S A 108: 73–78.

54. Cifuentes-RojasC, NelsonADL, BoltzKA, KannanK, SheXT, et al. (2012) An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev 26: 2512–2523.

55. RiehsN, AkimchevaS, PuizinaJ, BulankovaP, IdolRA, et al. (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121: 2208–2216.

56. ShakirovEV, SurovtsevaYV, OsbunN, ShippenDE (2005) The Arabidopsis Pot1 and Pot2 proteins function in telomere length homeostasis and chromosome end protection. Mol Cell Biol 25: 7725–7733.

57. RossignolP, CollierS, BushM, ShawP, DoonanJH (2007) Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J Cell Sci 120: 3678–3687.

58. KucharM, FajkusJ (2004) Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett 578: 311–315.

59. SurovtsevaYV, ShakirovEV, VespaL, OsbunN, SongXY, et al. (2007) Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO J 26: 3653–3661.

60. FitzgeraldMS, RihaK, GaoF, RenS, McKnightTD, et al. (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A 96: 14813–14818.

61. SzatmariI, AradiJ (2001) Telomeric repeat amplification, without shortening or lengthening of the telomerase products: a method to analyze the processivity of telomerase enzyme. Nucleic Acids Res 29: 2E3.

62. RihaK, McKnightTD, GriffingLR, ShippenDE (2001) Living with genome instability: Plant responses to telomere dysfunction. Science 291: 1797–1800.

63. HeacockM, SpanglerE, RihaK, PuizinaJ, ShippenDE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23: 2304–2313.

64. ChenLY, MajerskaJ, LingnerJ (2013) Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev 27: 2099–2108.

65. WanM, QinJ, SongyangZ, LiuD (2009) OB fold-containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. J Biol Chem 284: 26725–26731.

66. ChanA, BouleJB, ZakianVA (2008) Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLOS Genetics 4: e1000236.

67. GallegoME, BleuyardJY, Daoudal-CotterellS, JallutN, WhiteCI (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557–565.

68. RihaK, WatsonJM, ParkeyJ, ShippenDE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21: 2819–2826.

69. SchrumpfovaPP, VychodilovaI, DvorackovaM, MajerskaJ, DokladalL, et al. (2014) Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J 77: 770–781.

70. KappeiD, ButterF, BendaC, ScheibeM, DraskovicI, et al. (2013) HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. EMBO J 32: 1681–1701.

71. MinBS, CollinsK (2009) An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme Is required for elongation processivity and telomere maintenance. Mol Cell 36: 609–619.

72. KazdaA, ZellingerB, RosslerM, DerbovenE, KusendaB, et al. (2012) Chromosome end protection by blunt-ended telomeres. Genes Dev 26: 1703–1713.

73. ShakirovEV, ShippenDE (2004) Length regulation and dynamics of individual telomere tracts in wild-type Arabidopsis. Plant Cell 16: 1959–1967.

74. SalehA, Alvarez-VenegasR, AvramovaZ (2008) An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 3: 1018–1025.

75. KaramyshevaZN, SurovtsevaYV, VespaL, ShakirovEV, ShippenDE (2004) A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis. J Biol Chem 279: 47799–47807.

76. FitzgeraldMS, McKnightTD, ShippenDE (1996) Characterization and developmental patterns of telomerase expression in plants. Proc Natl Acad Sci U S A 93: 14422–14427.

77. CoccioloneSM, ConeKC (1993) Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics 135: 575–588.

78. KannanK, NelsonADL, ShippenDE (2008) Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. Mol Cell Biol 28: 2332–2341.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#