#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in


Successful reproduction depends upon the receipt and processing of distinct chromatin packages from sperm and oocytes. This includes not only a unique complement of DNA, but information in the form of proteins, such as histones, that differentially package the DNA in each cell type. For example, histone variants and post-translationally modified histones can carry epigenetic information across generations. Such information is then reprogrammed in the new embryo to ensure proper development. However, it is unclear how many of these marks are established during gamete formation and reprogrammed after fertilization. We define a signature histone variant and post-translational modification profile of sperm chromatin from C. elegans. This profile is established during sperm formation in part by exchanging canonical histones with sperm-specific histone proteins. Histone variants and modifications passed from sperm and oocytes are differentially removed or retained, suggesting that the embryo can reprogram epigenetic information from each parent distinctly. These C. elegans studies reveal that both conserved and novel histone modification and exchange mechanisms are used across diverse species to establish and reprogram epigenetic information.


Vyšlo v časopise: The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004588
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004588

Souhrn

Successful reproduction depends upon the receipt and processing of distinct chromatin packages from sperm and oocytes. This includes not only a unique complement of DNA, but information in the form of proteins, such as histones, that differentially package the DNA in each cell type. For example, histone variants and post-translationally modified histones can carry epigenetic information across generations. Such information is then reprogrammed in the new embryo to ensure proper development. However, it is unclear how many of these marks are established during gamete formation and reprogrammed after fertilization. We define a signature histone variant and post-translational modification profile of sperm chromatin from C. elegans. This profile is established during sperm formation in part by exchanging canonical histones with sperm-specific histone proteins. Histone variants and modifications passed from sperm and oocytes are differentially removed or retained, suggesting that the embryo can reprogram epigenetic information from each parent distinctly. These C. elegans studies reveal that both conserved and novel histone modification and exchange mechanisms are used across diverse species to establish and reprogram epigenetic information.


Zdroje

1. MillerD, BrinkworthM, IlesD (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139: 287–301.

2. Eirin-LopezJM, AusioJ (2009) Origin and evolution of chromosomal sperm proteins. Bioessays 31: 1062–1070.

3. BraunRE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28: 10–12.

4. Sassone-CorsiP (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296: 2176–2178.

5. BurtonA, Torres-PadillaME (2010) Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 9: 444–454.

6. RobertsonS, LinR (2012) The oocyte-to-embryo transition. Adv Exp Med Biol 757: 351–372.

7. GovinJ, CaronC, LestratC, RousseauxS, KhochbinS (2004) The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem 271: 3459–3469.

8. GoddeJS, UraK (2009) Dynamic alterations of linker histone variants during development. Int J Dev Biol 53: 215–224.

9. MontellierE, BoussouarF, RousseauxS, ZhangK, BuchouT, et al. (2013) Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27: 1680–1692.

10. BoulardM, GautierT, MbeleGO, GersonV, HamicheA, et al. (2006) The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26: 1518–1526.

11. IshibashiT, LiA, Eirin-LopezJM, ZhaoM, MissiaenK, et al. (2010) H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res 38: 1780–1789.

12. LiA, MaffeyAH, AbbottWD, Conde e SilvaN, PrunellA, et al. (2005) Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry 44: 2529–2535.

13. BaoY, KoneskyK, ParkYJ, RosuS, DyerPN, et al. (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. Embo J 23: 3314–3324.

14. GovinJ, EscoffierE, RousseauxS, KuhnL, FerroM, et al. (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176: 283–294.

15. TachiwanaH, KagawaW, OsakabeA, KawaguchiK, ShigaT, et al. (2010) Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci U S A 107: 10454–10459.

16. WuF, CaronC, De RobertisC, KhochbinS, RousseauxS (2008) Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J Reprod Dev 54: 413–417.

17. LewisJD, AbbottDW, AusioJ (2003) A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol 81: 131–140.

18. QianMX, PangY, LiuCH, HaratakeK, DuBY, et al. (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153: 1012–1024.

19. AweS, Renkawitz-PohlR (2010) Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 56: 44–61.

20. HazzouriM, Pivot-PajotC, FaureAK, UssonY, PelletierR, et al. (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79: 950–960.

21. RathkeC, BaarendsWM, Jayaramaiah-RajaS, BartkuhnM, RenkawitzR, et al. (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120: 1689–1700.

22. BaarendsWM, HoogerbruggeJW, RoestHP, OomsM, VreeburgJ, et al. (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207: 322–333.

23. LuLY, WuJ, YeL, GavrilinaGB, SaundersTL, et al. (2010) RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18: 371–384.

24. ChenHY, SunJM, ZhangY, DavieJR, MeistrichML (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273: 13165–13169.

25. SinHS, BarskiA, ZhangF, KartashovAV, NussenzweigA, et al. (2012) RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev 26: 2737–2748.

26. BrunnerAM, NanniP, MansuyIM (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7: 2.

27. ShechterD, NicklayJJ, ChittaRK, ShabanowitzJ, HuntDF, et al. (2009) Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 284 1064- Drosophila 4.

28. HammoudSS, NixDA, ZhangH, PurwarJ, CarrellDT, et al. (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460: 473–478.

29. BrykczynskaU, HisanoM, ErkekS, RamosL, OakeleyEJ, et al. (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17: 679–687.

30. van der HeijdenGW, DerijckAA, RamosL, GieleM, van der VlagJ, et al. (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298: 458–469.

31. ParadowskaAS, MillerD, SpiessAN, ViewegM, CernaM, et al. (2012) Genome wide identification of promoter binding sites for H4K12ac in human sperm and its relevance for early embryonic development. Epigenetics 7: 1057–1070.

32. AricoJK, KatzDJ, van der VlagJ, KellyWG (2011) Epigenetic Patterns Maintained in Early Caenorhabditis elegans Embryos Can Be Established by Gene Activity in the Parental Germ Cells. PLoS Genet 7: e1001391.

33. HalesBF, GrenierL, LalancetteC, RobaireB (2011) Epigenetic programming: from gametes to blastocyst. Birth Defects Res A Clin Mol Teratol 91: 652–665.

34. SimpsonVJ, JohnsonTE, HammenRF (1986) Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res 14: 6711–6719.

35. ChuD, LiuH, NixP, WuT, RalstonE, et al. (2006) Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443: 101–105.

36. OoiSL, PriessJR, HenikoffS (2006) Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet 2: e97.

37. L'HernaultSW, RobertsTM (1995) Cell biology of nematode sperm. Methods Cell Biol 48: 273–301.

38. BalhornR, GledhillBL, WyrobekAJ (1977) Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry 16: 4074–4080.

39. GatewoodJM, CookGR, BalhornR, SchmidCW, BradburyEM (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265: 20662–20666.

40. LinD, TabbDL, YatesJR3rd (2003) Large-scale protein identification using mass spectrometry. Biochim Biophys Acta 1646: 1–10.

41. LiuH, SadygovRG, YatesJR3rd (2004) A model for random sampling and estimation of relative protein abundance. Anal Chem 76: 4193–4201.

42. CantinGT, YatesJR3rd (2004) Strategies for shotgun identification of post-translational modifications by mass spectrometry. J Chromatogr A 1053: 7–14.

43. LuB, XuT, ParkSK, YatesJR3rd (2009) Shotgun protein identification and quantification by mass spectrometry. Methods Mol Biol 564: 261–288.

44. ShechterD, DormannHL, AllisCD, HakeSB (2007) Extraction, purification and analysis of histones. Nat Protoc 2: 1445–1457.

45. CociorvaD, DLT, YatesJR (2007) Validation of tandem mass spectrometry database search results using DTASelect. Curr Protoc Bioinformatics Chapter 13: Unit 13 14.

46. TabbDL, McDonaldWH, YatesJR3rd (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1: 21–26.

47. EngJK, McCormackA, YatesJR3rd (1994) An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J Am Soc Mass Spectrom 5: 976–989.

48. IshihamaY, OdaY, TabataT, SatoT, NagasuT, et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4: 1265–1272.

49. McIlwainS, MathewsM, BeremanMS, RubelEW, MacCossMJ, et al. (2012) Estimating relative abundances of proteins from shotgun proteomics data. BMC Bioinformatics 13: 308.

50. ZhangY, WenZ, WashburnMP, FlorensL (2010) Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 82: 2272–2281.

51. ZybailovB, ColemanMK, FlorensL, WashburnMP (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77: 6218–6224.

52. ZhangY, FonslowBR, ShanB, BaekMC, YatesJR3rd (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113: 2343–2394.

53. EgelhoferTA, MinodaA, KlugmanS, LeeK, Kolasinska-ZwierzP, et al. (2010) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18: 91–93.

54. NakagawaT, KajitaniT, TogoS, MasukoN, OhdanH, et al. (2008) Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev 22: 37–49.

55. ChuDS, ShakesDC (2012) Spermatogenesis. Adv Exp Med Biol 757: 171–203.

56. ShakesDC, WuJC, SadlerPL, LapradeK, MooreLL, et al. (2009) Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS Genet 5: e1000611.

57. SantistebanMS, KalashnikovaT, SmithMM (2000) Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell 103: 411–422.

58. WhittleCM, McClinicKN, ErcanS, ZhangX, GreenRD, et al. (2008) The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet 4: e1000187.

59. UpdikeDL, MangoSE (2006) Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genet 2: e161.

60. KellyWG, SchanerCE, DernburgAF, LeeM-H, KimSK, et al. (2002) X chromosome silencing in the germline of C. elegans. Development 129: 479–492.

61. BeanCJ, SchanerCE, KellyWG (2004) Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat Genet 36: 100–105.

62. Schaner CE, Kelly WG (2006) Germline Chromatin; Community TCeR, editor.

63. Jaramillo-LambertA, EngebrechtJ (2010) A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics 184: 613–628.

64. JedrusikMA, SchulzeE (2001) A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 128: 1069–1080.

65. McCarterJ, BartlettB, DangT, SchedlT (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205: 111–128.

66. SadlerPL, ShakesDC (2000) Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development 127: 355–366.

67. EdgarLG, McGheeJD (1988) DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53: 589–599.

68. BaughLR, HillAA, SlonimDK, BrownEL, HunterCP (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130: 889–900.

69. SeydouxG, DunnMA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124: 2191–2201.

70. SeydouxG, MelloCC, PettittJ, WoodWB, PriessJR, et al. (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382: 713–716.

71. WangJT, SeydouxG (2013) Germ cell specification. Adv Exp Med Biol 757: 17–39.

72. FarcasAM, BlackledgeNP, SudberyI, LongHK, McGouranJF, et al. (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1: e00205.

73. VassilevAP, RasmussenHH, ChristensenEI, NielsenS, CelisJE (1995) The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in a fraction of cells in S-phase. J Cell Sci 108 (Pt 3) 1205–1215.

74. BaarendsWM, WassenaarE, van der LaanR, HoogerbruggeJ, Sleddens-LinkelsE, et al. (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25: 1041–1053.

75. StromeS, WoodWB (1982) Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci U S A 79: 1558–1562.

76. Al RawiS, Louvet-ValleeS, DjeddiA, SachseM, CulettoE, et al. (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334: 1144–1147.

77. HajjarC, SampudaKM, BoydL (2014) Dual roles for ubiquitination in the processing of sperm organelles after fertilization. BMC Dev Biol 14: 6.

78. SobelRE, CookRG, PerryCA, AnnunziatoAT, AllisCD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A 92: 1237–1241.

79. WagnerCR, KuerversL, BaillieDL, YanowitzJL (2010) xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature 467: 839–843.

80. RechtsteinerA, ErcanS, TakasakiT, PhippenTM, EgelhoferTA, et al. (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet 6.

81. ReubenM, LinR (2002) Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans. Dev Biol 245: 71–82.

82. BenderLB, SuhJ, CarrollCR, FongY, FingermanIM, et al. (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133: 3907–3917.

83. VielleA, LangJ, DongY, ErcanS, KotwaliwaleC, et al. (2012) H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation. PLoS Genet 8: e1002933.

84. OogaM, InoueA, KageyamaS, AkiyamaT, NagataM, et al. (2008) Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod 78: 413–424.

85. SatoM, SatoK (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334: 1141–1144.

86. MeistrichML, BucciLR, Trostle-WeigePK, BrockWA (1985) Histone variants in rat spermatogonia and primary spermatocytes. Dev Biol 112: 230–240.

87. NashunB, YukawaM, LiuH, AkiyamaT, AokiF (2011) Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 137: 3785–3794.

88. AusioJ (2006) Histone variants–the structure behind the function. Brief Funct Genomic Proteomic 5: 228–243.

89. MillarCB (2013) Organizing the genome with H2A histone variants. Biochem J 449: 567–579.

90. LiuT, RechtsteinerA, EgelhoferTA, VielleA, LatorreI, et al. (2011) Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res 21: 227–236.

91. BeckDB, OdaH, ShenSS, ReinbergD (2012) PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 26: 325–337.

92. RathkeC, BaarendsWM, AweS, Renkawitz-PohlR (2013) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839: 155–168.

93. KulkarniM, ShakesDC, GuevelK, SmithHE (2013) SPE-44 implements sperm cell fate. PLoS Genet 8: e1002678.

94. GovinJ, LestratC, CaronC, Pivot-PajotC, RousseauxS, et al. (2006) Histone acetylation-mediated chromatin compaction during mouse spermatogenesis. Ernst Schering Res Found Workshop 155–172.

95. WardS, ArgonY, NelsonGA (1981) Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J Cell Biol 91: 26–44.

96. OakbergEF (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99: 507–516.

97. Jaramillo-LambertA, EllefsonM, VilleneuveAM, EngebrechtJ (2007) Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol 308: 206–221.

98. FuchsSM, StrahlBD (2011) Antibody recognition of histone post-translational modifications: emerging issues and future prospects. Epigenomics 3: 247–249.

99. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

100. LinkAJ, EngJ, SchieltzDM, CarmackE, MizeGJ, et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17: 676–682.

101. WashburnMP, WoltersD, YatesJR3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242–247.

102. HarrisTW, BaranJ, BieriT, CabunocA, ChanJ, et al. (2014) WormBase 2014: new views of curated biology. Nucleic Acids Res 42: D789–793.

103. PicottiP, AebersoldR, DomonB (2007) The implications of proteolytic background for shotgun proteomics. Mol Cell Proteomics 6: 1589–1598.

104. NielsenML, VermeulenM, BonaldiT, CoxJ, MoroderL, et al. (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5: 459–460.

105. KosinskiM, McDonaldK, SchwartzJ, YamamotoI, GreensteinD (2005) C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes. Development 132: 3357–3369.

106. Shaham S (2006) Methods in Cell Biology; Community TCeR, editor.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#