#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse


Recent developments in high throughput applications to manipulate and inactivate specific genes in mouse embryonic stem cells (ES cells) have allowed for the initiation of large scale reverse genetic screens in the mouse. The immediate connection of a phenotype to a mutated (null) gene represents a paradigm shift in our ability to explore gene function. This study utilized such a screening approach to investigate the genetic contribution to skin development and homeostasis. Not only does this approach provide insight into the genetics of skin biology, it is also instrumental in generating novel models with which to study the genetic underpinnings of skin disease. Initial screening of 562 mutated genes in mice uncovered previously unrecognized genes involved in the biology of this organ and identified novel functions for previously studied genes associated with epidermal phenotypes. Taken together, these results highlight high throughput screening approaches that are valuable in reverse genetic screening and provide a pool of mouse mutants, available to the scientific community, that will serve as the basis for further detailed investigations into skin function and skin disease.


Vyšlo v časopise: Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004705
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004705

Souhrn

Recent developments in high throughput applications to manipulate and inactivate specific genes in mouse embryonic stem cells (ES cells) have allowed for the initiation of large scale reverse genetic screens in the mouse. The immediate connection of a phenotype to a mutated (null) gene represents a paradigm shift in our ability to explore gene function. This study utilized such a screening approach to investigate the genetic contribution to skin development and homeostasis. Not only does this approach provide insight into the genetics of skin biology, it is also instrumental in generating novel models with which to study the genetic underpinnings of skin disease. Initial screening of 562 mutated genes in mice uncovered previously unrecognized genes involved in the biology of this organ and identified novel functions for previously studied genes associated with epidermal phenotypes. Taken together, these results highlight high throughput screening approaches that are valuable in reverse genetic screening and provide a pool of mouse mutants, available to the scientific community, that will serve as the basis for further detailed investigations into skin function and skin disease.


Zdroje

1. WhiteJK, GerdinAK, KarpNA, RyderE, BuljanM, et al. (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154: 452–464.

2. BassettJH, GogakosA, WhiteJK, EvansH, JacquesRM, et al. (2012) Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet 8: e1002858.

3. van der WeydenL, AdamsDJ, BradleyA (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11: 133–164.

4. van der WeydenL, WhiteJK, AdamsDJ, LoganDW (2011) The mouse genetics toolkit: revealing function and mechanism. Genome Biol 12: 224.

5. SkarnesWC, RosenB, WestAP, KoutsourakisM, BushellW, et al. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474: 337–342.

6. Liakath-AliK, VancollieVE, HeathE, SmedleyDP, EstabelJ, et al. (2014) Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen. Nat Commun 5: 3540.

7. GoldsmithLA (1990) My organ is bigger than your organ. Arch Dermatol 126: 301–302.

8. ChuongCM, NickoloffBJ, EliasPM, GoldsmithLA, MacherE, et al. (2002) What is the ‘true’ function of skin? Exp Dermatol 11: 159–187.

9. St SauverJL, WarnerDO, YawnBP, JacobsonDJ, McGreeME, et al. (2013) Why patients visit their doctors: assessing the most prevalent conditions in a defined American population. Mayo Clin Proc 88: 56–67.

10. DyerJA (2013) Practice gaps. Propranolol to treat hemangiomas of infancy: safety and side effect recognition. JAMA Dermatol 149: 485–486.

11. AwgulewitschA (2003) Hox in hair growth and development. Naturwissenschaften 90: 193–211.

12. BrownSD, ChambonP, de AngelisMH (2005) EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat Genet 37: 1155.

13. SmithCL, GoldsmithCA, EppigJT (2005) The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 6: R7.

14. TestaG, SchaftJ, van der HoevenF, GlaserS, AnastassiadisK, et al. (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38: 151–158.

15. BotchkarevVA, PausR (2003) Molecular biology of hair morphogenesis: development and cycling. J Exp Zool B Mol Dev Evol 298: 164–180.

16. DiTommasoT, CottleDL, PearsonHB, SchlüterH, KaurP, et al. (2014) Keratin 76 is Required for Tight Junction Function and Maintenance of the Skin Barrier. PLoS Genet 10: e1004706.

17. HassonT, GillespiePG, GarciaJA, MacDonaldRB, ZhaoY, et al. (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137: 1287–1307.

18. LewisCJ, MardaryevAN, PoterlowiczK, SharovaTY, AzizA, et al. (2014) Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol 134: 827–837.

19. GaoG, FernandezCS, StapletonD, AusterAS, WidmerJ, et al. (1996) Non-catalytic beta- and gamma-subunit isoforms of the 5′-AMP-activated protein kinase. J Biol Chem 271: 8675–8681.

20. IrvineAD, McLeanWH (1999) Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol 140: 815–828.

21. SundbergJP, SilvaKA (2012) What color is the skin of a mouse? Vet Pathol 49: 142–145.

22. PlikusM, ChuongCM (2004) Making waves with hairs. J Invest Dermatol 122: vii–ix.

23. PlikusMV, ChuongCM (2008) Complex hair cycle domain patterns and regenerative hair waves in living rodents. J Invest Dermatol 128: 1071–1080.

24. Muller-RoverS, HandjiskiB, van der VeenC, EichmullerS, FoitzikK, et al. (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117: 3–15.

25. McLeanWH, MooreCB (2011) Keratin disorders: from gene to therapy. Hum Mol Genet 20: R189–197.

26. LewinAS, GlazerPM, MilstoneLM (2005) Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc 10: 47–61.

27. ZhuP, ZhouW, WangJ, PucJ, OhgiKA, et al. (2007) A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27: 609–621.

28. NijnikA, ClareS, HaleC, RaisenC, McIntyreRE, et al. (2012) The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. Blood 119: 1370–1379.

29. SzeverenyiI, CassidyAJ, ChungCW, LeeBT, CommonJE, et al. (2008) The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 29: 351–360.

30. ChamcheuJC, SiddiquiIA, SyedDN, AdhamiVM, LiovicM, et al. (2011) Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 508: 123–137.

31. UittoJ, RichardG, McGrathJA (2007) Diseases of epidermal keratins and their linker proteins. Exp Cell Res 313: 1995–2009.

32. CotsarelisG, SunTT, LavkerRM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337.

33. LeeHO, LevorseJM, ShinMK (2003) The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol 259: 162–175.

34. ChandraS, KapurR, ChuzhanovaN, SummeyV, PrenticeD, et al. (2003) A rare complex DNA rearrangement in the murine Steel gene results in exon duplication and a lethal phenotype. Blood 102: 3548–3555.

35. HodgkinsonCA, MooreKJ, NakayamaA, SteingrimssonE, CopelandNG, et al. (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74: 395–404.

36. BlasiusAL, BrandlK, CrozatK, XiaY, KhovananthK, et al. (2009) Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function. Proc Natl Acad Sci U S A 106: 2706–2711.

37. EpsteinDJ, VekemansM, GrosP (1991) Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67: 767–774.

38. MontcouquiolM, RachelRA, LanfordPJ, CopelandNG, JenkinsNA, et al. (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423: 173–177.

39. KibarZ, BosoiCM, KooistraM, SalemS, FinnellRH, et al. (2009) Novel mutations in VANGL1 in neural tube defects. Hum Mutat 30: E706–715.

40. YinH, CopleyCO, GoodrichLV, DeansMR (2012) Comparison of phenotypes between different vangl2 mutants demonstrates dominant effects of the Looptail mutation during hair cell development. PLoS One 7: e31988.

41. HigginsCA, WestgateGE, JahodaCA (2009) From telogen to exogen: mechanisms underlying formation and subsequent loss of the hair club fiber. J Invest Dermatol 129: 2100–2108.

42. WaterstonRH, Lindblad-TohK, BirneyE, RogersJ, AbrilJF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

43. BlancoS, KurowskiA, NicholsJ, WattFM, BenitahSA, et al. (2011) The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet 7: e1002403.

44. JensenKB, WattFM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci U S A 103: 11958–11963.

45. JensenKB, CollinsCA, NascimentoE, TanDW, FryeM, et al. (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4: 427–439.

46. FestaE, FretzJ, BerryR, SchmidtB, RodehefferM, et al. (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146: 761–771.

47. TakegaharaN, KangS, NojimaS, TakamatsuH, OkunoT, et al. (2010) Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 24: 4782–4792.

48. ToyofukuT, YoshidaJ, SugimotoT, ZhangH, KumanogohA, et al. (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 8: 1712–1719.

49. BenitahSA, FryeM, GlogauerM, WattFM (2005) Stem cell depletion through epidermal deletion of Rac1. Science 309: 933–935.

50. EdwardsAM, IsserlinR, BaderGD, FryeSV, WillsonTM, et al. (2011) Too many roads not taken. Nature 470: 163–165.

51. StennK (2005) Exogen is an active, separately controlled phase of the hair growth cycle. J Am Acad Dermatol 52: 374–375.

52. SmythI, HackingDF, HiltonAA, MukhamedovaN, MeiklePJ, et al. (2008) A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet 4: e1000192.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#