#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Analysis of Mutant Alleles of Different Strength Reveals Multiple Functions of Topoisomerase 2 in Regulation of Chromosome Structure


Type II topoisomerases (Topo II) are enzymes that disentangle DNA molecules during essential cellular processes such as DNA replication, chromosome condensation and mitotic cell division. Topo II is a major component of mitotic chromosomes and it is a well known target for cancer chemotherapy. Topo II inhibitors block the Topo II enzymatic activity leading to extensive DNA damage, which ultimately kills the cancer cell. Thus, investigating the role of Topo II in the assembly and structural maintenance of chromosomes is not only relevant to understand chromosome biology but might also have a translational impact on cancer therapy. Here we used Drosophila as model system to analyze the effect of Topo II depletion on chromosome stability. We show that the chromosomal phenotypes of mutant flies vary with the amount of residual Topo II, ranging from site-specific chromosome breaks, variations in chromosome number (aneuploidy and poliploidy) and dramatic defects in chromosome morphology. The chromosomal phenotypes observed in flies recapitulate all phenotypes seen in Topo II-depleted vertebrate chromosomes, reconciling the phenotypic discrepancies reported in previous studies. In addition, our finding that the Topo II dependent phenotypes vary with the residual amount of the enzyme provides useful information on the possible outcome of cancer therapy with Topo II inhibitors.


Vyšlo v časopise: The Analysis of Mutant Alleles of Different Strength Reveals Multiple Functions of Topoisomerase 2 in Regulation of Chromosome Structure. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004739
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004739

Souhrn

Type II topoisomerases (Topo II) are enzymes that disentangle DNA molecules during essential cellular processes such as DNA replication, chromosome condensation and mitotic cell division. Topo II is a major component of mitotic chromosomes and it is a well known target for cancer chemotherapy. Topo II inhibitors block the Topo II enzymatic activity leading to extensive DNA damage, which ultimately kills the cancer cell. Thus, investigating the role of Topo II in the assembly and structural maintenance of chromosomes is not only relevant to understand chromosome biology but might also have a translational impact on cancer therapy. Here we used Drosophila as model system to analyze the effect of Topo II depletion on chromosome stability. We show that the chromosomal phenotypes of mutant flies vary with the amount of residual Topo II, ranging from site-specific chromosome breaks, variations in chromosome number (aneuploidy and poliploidy) and dramatic defects in chromosome morphology. The chromosomal phenotypes observed in flies recapitulate all phenotypes seen in Topo II-depleted vertebrate chromosomes, reconciling the phenotypic discrepancies reported in previous studies. In addition, our finding that the Topo II dependent phenotypes vary with the residual amount of the enzyme provides useful information on the possible outcome of cancer therapy with Topo II inhibitors.


Zdroje

1. WangJC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3: 430–440.

2. NitissJL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev Cancer 9: 327–337.

3. DrakeFH, HofmannGA, BartusHF, MatternMR, CrookeST, et al. (1989) Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 28: 8154–8160.

4. ChristensenMO, LarsenMK, BarthelmesHU, HockR, AndersenCL, et al. (2002) Dynamics of human topoisomerase II alpha and II beta in living cells. J Cell Biol 157: 31–44.

5. WyckoffE, HsiehTS (1988) Functional expression of a Drosophila gene in yeast: genetic complementation of DNA topoisomerase II. Proc Natl Acad Sci USA 85: 6272–6276.

6. AdachiN, MiyaikeM, IkedaH, KikuchiA (1992) Characterization of cDNA encoding the mouse DNA topoisomerase II that can complement the budding yeast top2 mutation. Nucleic Acids Res 20: 5297–5303.

7. JensenS, RedwoodCS, JenkinsJR, AndersenAH, HicksonID (1996) Human DNA topoisomerases II alpha and II beta can functionally substitute for yeast TOP2 in chromosome segregation and recombination. Mol Gen Genet 252: 79–86.

8. EarnshawWC, HalliganB, CookeCA, HeckMM, LiuLF (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100: 1706–1715.

9. GasserSM, LarocheT, FalquetJ, Boy de la TourE, LaemmliUK (1986) Metaphase chromosome structure: involvement of topoisomerase II. J Mol Biol 188: 613–629.

10. OhtaS, Bukowski-WillsJC, Sanchez-PulidoL, Alves FdeL, WoodL, et al. (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142: 810–821.

11. SwedlowJR, AgardDA, SedatJW (1993) Multiple populations of topoisomerase II detected in vivo by time-lapse, threedimensional wide-field microscopy. Cell 73: 97–108.

12. TavorminaPA, ComeM-G, HudsonJR, MoY-Y, BeckWT, et al. (2002) Rapid exchange of mammalian topoisomerase II alpha at kinetochores and chromosome arms in mitosis. J Cell Biol 158: 23–29.

13. MaeshimaK, LaemmliUK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4: 467–480.

14. SamejimaK, SamejimaI, VagnarelliP, OgawaH, VargiuG, et al. (2012) Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase II alpha. J Cell Biol 199: 755–770.

15. RattnerJB, HendzelMJ, FurbeeCS, MullerMT, Bazett-JonesDP (1996) Topoisomerase II alpha is associated with the mamammalian centromere in a cell cycle- and species-specific manner and is required for proper centromere/kinetochore structure. J Cell Biol 134: 1097–1107.

16. BachantJ, AlcasabasA, BlatY, KlecknerN, ElledgeSJ (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell 9: 1169–1182.

17. SpenceJM, PhuaHH, MillsW, CarpenterAJ, PorterAC, et al. (2007) Depletion of topoisomerase II alpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH-coated anaphase threads. J Cell Sci 120: 3952–3964.

18. DiNardoS, VoelkelK, SternglanzR (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 81: 2616–2620.

19. UemuraT, YanagidaM (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3: 1737–1744.

20. HolmC, GotoT, WangJC, BotsteinD (1985) DNA topoisomerase II is required at the timing of mitosis in yeast. Cell 41: 553–563.

21. UemuraT, OhkuraH, AdachiY, MorinoK, ShiozakiK, et al. (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50: 917–925.

22. BaxterJ, DiffleyJF (2008) Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30: 790–802.

23. BaxterJ, AragonL (2012) A model for chromosome condensation based on the interplay between condensin and topoisomerase II. Trends Genet 28: 110–117.

24. JohnsonM, PhuaHH, BennettSC, SpenceJM, FarrCJ (2009) Studying vertebrate topoisomerase 2 function using a conditional knockdown system in DT40 cells. Nucleic Acids Res 37: e98.

25. GonzalezRE, LimCU, ColeK, BianchiniCH, SchoolsGP, et al. (2011) Effects of conditional depletion of topoisomerase II on cell cycle progression in mammalian cells. Cell Cycle 10: 3505–3514.

26. Gimenez-AbianJF, ClarkeDJ, MullingerAM, DownesCS, JohnsonRT (1995) A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes. J Cell Biol 131: 7–17.

27. AndreassenPR, LacroixFB, MargolisRL (1997) Chromosomes with two intact axial cores are induced by G2 checkpoint override: evidence that DNA decatenation is not required to template the chromosome structure. J Cell Biol 136: 29–43.

28. AdachiY, LukeM, LaemmliUK (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64: 137–148.

29. HiranoT, MitchisonTJ (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J Cell Biol 120: 601–612.

30. Gimenez-AbianJF, ClarkeDJ, DevlinJ, Gimenez-AbianMI, De la TorreC, et al. (2000) Premitotic chromosome individualization in mammalian cells depends on topoisomerase II activity. Chromosoma 109: 235–344.

31. CarpenterAJ, PorterAC (2004) Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase II alpha mutant human cell line. Mol Biol Cell 15: 5700–5711.

32. SakaguchiA, KikuchiA (2004) Functional compatibility between isoform alpha and beta of type II DNA topoisomerase. J Cell Sci 117: 1047–1054.

33. LinkaRM, PorterAC, VolkovA, MielkeC, BoegeF, et al. (2007) C-terminal regions of topoisomearase II alpha and II beta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res 35: 3810–3822.

34. DownesCS, ClarkeDJ, MullingerAM, Gimenez-AbianJF, CreightonAM, et al. (1994) A topoisomerase II dependent G2 cycle checkpoint in mammalian cells. Nature 372: 467–470.

35. DemingPB, CistulliCA, ZhaoH, GravesPR, Piwnica-WormsH, et al. (2001) The human decatenation checkpoint. Proc Natl Acad Sci USA 98: 12044–12049.

36. SkoufiasDA, LacroixFB, AndreassenPR, WilsonL, MargolisRL (2004) Inhibition of DNA decatenation, bu not DNA damage, arrests cells at metaphase. Mol Cell 15: 977–990.

37. FurnissKL, TsaiH-J, BylJA, LaneAB, VasAC, et al. (2013) Direct Monitoring of the strand passage reaction of DNA Topoisomerase II triggers checkpoint activation. PLoS Genet 9: e1003832.

38. BowerJJ, KaracaGF, ZhouY, SimpsonDA, Cordeiro-StoneM, et al. (2010) Topoisomerase II alpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene 29: 4787–4799.

39. BuchenauP, SaumweberH, Arndt-JovinDJ (1993) Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J Cell Sci 104: 1175–1185.

40. ChangCJ, GouldingS, EarnshawWC, CarmenaM (2003) RNAi analysis reveals an unexpected role for topoisomerase II in chromosome arm congression to a metaphase plate. J Cell Sci 116: 4715–4726.

41. SommaMP, CepraniF, BucciarelliE, NaimV, De ArcangelisV, et al. (2008) Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference. PloS Genetics 4: e1000126.

42. CoelhoPA, Queiroz-MachadoJ, CarmoAM, Moutinho-PereiraS, MaiatoH, et al. (2008) Dual role of topoisomerase II in centromere resolution and aurora B activity. PLoS Biol 6: e207.

43. WilliamsB, BatemanJR, NovikovND, WuCT (2007) Disruption of topoisomerase II perturbs pairing in Drosophila cell culture. Genetics 177: 31–46.

44. RamosE, TorreEA, BusheyAM, GurudattaBV, CorcesVG (2011) DNA topoisomerase II modulates insulator function in Drosophila. PLOS ONE 6: e16562.

45. HohlAM, ThompsonM, SoshnevAA, WuJ, MorrisJ, et al. (2012) Restoration of topoisomerase 2 function by complementation of defective monomers in Drosophila. Genetics 192: 843–856.

46. BucciarelliE, GiansantiMG, BonaccorsiS, GattiM (2003) Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. J Cell Biol 160: 993–999.

47. GattiM, BakerBS (1989) Genes controlling essential cell-cycle functions in Drosophila melanogaster. Genes Dev 3: 438–453.

48. MellerVH, FisherPA, BerriosM (1995) Intranuclear distribution of DNA topoisomerase II and chromatin. Chromosome Res 4: 255–260.

49. GemkowMJ, DichterJ, Arndt-JovinDJ (2001) Developmental Regulation of DNA-Topoisomerases during Drosophila Embryogenesis. Exp Cell Res 262: 114–121.

50. SavvidouE, CobbeN, SteffensenS, CotterillS, HeckMM (2005) Drosophila CAP-D2 is required for condensin complex stability and resolution of sister chromatids. J Cell Sci 118: 2529–2543.

51. Cooper KW (1950) Normal spermatogenesis in Drosophila. In: Demerec M, ed. Biology of Drosophila. New York: Wiley. pp 1–61.

52. CenciG, BonaccorsiS, PisanoC, VerniF, GattiM (1994) Chromatin and microtubule organization during premeiotic, meiotic and early postmeiotic stages of Drosophila melanogaster spermatogenesis. J Cell Sci. 107: 3521–3534.

53. VazquezJ, BelmontAS, SedatJW (2002) The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol 12: 1473–1483.

54. McKeeBD, YanR, TsaiJH (2012) Meiosis in male Drosophila. Spermatogenesis 2: 167–184.

55. TomkielJE, WakimotoBT, BriscoeAJr (2001) The teflon gene is required for maintenance of autosomal homolog pairing at meiosis I in male Drosophila melanogaster. Genetics 157: 273–281.

56. ThomasSE, Soltani-BejnoodM, RothP, DornR, LogsdonJMJr, McKeeBD (2005) Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. Cell 123: 555–568.

57. AryaGH, LodicoMJ, AhmadOI, AminR, TomkielJE (2006) Molecular characterization of teflon, a gene required for meiotic autosome segregation in male Drosophila melanogaster. Genetics 174: 125–134.

58. HartlTA, SweeneySJ, KneplerPJ, BoscoG (2008) Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet 4: e1000228.

59. GiansantiMG, BucciarelliE, BonaccorsiS, GattiM (2008) Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr Biol 18: 303–309.

60. GattiM, PimpinelliS (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet 26: 2 39–275.

61. WeiY, YuL, BowenJ, GorovskyMA, AllisCD (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97: 99–109.

62. BucciarelliE, PellacaniC, NaimV, PalenaA, GattiM, et al. (2009) Drosophila Dgt6 interacts with Ndc80, Msps/XMAP215, and gamma-tubulin to promote kinetochore-driven MT formation. Curr Biol 19: 1839–1845.

63. Mottier-PavieV, CenciG, VernìF, GattiM, BonaccorsiS (2011) Phenotypic analysis of misato function reveals roles of noncentrosomal microtubules in Drosophila spindle formation. J Cell Sci 124: 706–717.

64. SperkaT, WangJ, RudolphKL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13: 579–590.

65. ShilohY, ZivY (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14: 197–210.

66. CiapponiL, CenciG, GattiM (2006) The Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability. Genetics 173: 1 447–1454.

67. BauerCR, HartlTA, BoscoG (2012) Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genet 8 doi: 10.1371/journal.pgen.1002873

68. DeuringR, FantiL, ArmstrongJA, SarteM, PapoulasO, et al. (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5: 355–365.

69. BadenhorstP, VoasM, RebayI, WuC (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16: 3186–3198.

70. SpiererA, SeumC, DelattreM, SpiererP (2005) Loss of the modifiers of variegation Su(var)3–7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sci 118: 5047–5057.

71. SpiererA, BegeotF, SpiererP, DelattreM (2008) SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PLoS Genet 4 doi: 10.1371/journal.pgen.1000066

72. VermaakD, MalikHS (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 43: 467–492.

73. LängstG, BeckerPB (2001) ISWI induces nucleosome sliding on nicked DNA. Mol Cell 8: 1085–1092.

74. GelbartME, KurodaMI (2009) Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136: 1399–1410.

75. LucchesiJC (2009) The structure-function link of compensated chromatin in Drosophila. Curr Opin Genet Dev 19: 550–556.

76. CoronaDF, ClapierCR, BeckerPB, TamkunJW (2002) Modulation of ISWI function by site specific acetylation. EMBO Rep 3: 242–247.

77. Varga-WeiszPD, WilmM, BonteE, DumasK, MannM, et al. (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388: 598–602.

78. TsaiJ-H, YanR, McKeeBD (2011) Homolog pairing and sister chromatid cohesion in heterochromatin in Drosophila male meiosis I. Chromosoma 120: 335–351.

79. RoseD, ThomasW, HolmC (1990) Segregation of recombined chromosomes in meiosis requires DNA topoisomerase II. Cell 60: 1009–1017.

80. RoseD, HolmC (1993) Meiosis-specific arrest revealed in DNA topoisomerase II mutants. Mol Cell Biol 13: 3445–3455.

81. HartsuikerE, BählerJ, KohliJ (1998) The role of topoisomerase II in meiotic chromosome condensation and segregation in Schizosaccharomyces pombe. Mol Biol Cell 10: 2739–2750.

82. KallioM, LähdetieJ (1996) Fragmentation of centromeric DNA and prevention of homologous chromosome separation in male meiosis in vivo by the topoisomerase II inhibitor etoposide. Mutagenesis 11: 435–443.

83. KallioM, LähdetieJ (1997) Effects of the DNA topoisomerase II inhibitor merbarone in male mouse meiotic divisions in vivo: cell cycle arrest and induction of aneuploidy. Environ Mol Mutagen 29: 16–27.

84. MarchettiF, BishopJB, LoweX, GenerosoWM, HozierJ, et al. (2001) Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci USA 98: 3952–3957.

85. TatenoH, KamiguchiY (2001) Meiotic stage-dependent induction of chromosome aberrations in Chinese hamster primary oocytes exposed to topoisomerase II inhibitor etoposide. Mutat Res 476: 139–148.

86. CobbJ, ReddyRK, ParkC, HandelMA (1997) Analysis of expression and function of topoisomerase I and II during meiosis in male mice. Mol Reprod Dev 46: 489–498.

87. AlpheyL, JimenezJ, White-CooperH, DawsonI, NurseP, et al. (1992) twine, a cdc25 homolog that functions in the male and female germline of Drosophila. Cell 69: 977–988.

88. RebolloE, GonzálezC (2000) Visualizing the spindle checkpoint in Drosophila spermatocytes. EMBO Rep 1: 65–70.

89. NitissJL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9: 338–350.

90. HolmC, StearnsT, BotsteinD (1989) DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol 9: 159–168.

91. ToyodaY, YanagidaM (2006) Coordinated requirements of human Topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Mol Biol Cell 17: 2287–2302.

92. KäsE, LaemmliUK (1992) In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J 11: 705–716.

93. BonaccorsiS, LoheAR (1991) Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics 129: 177–189.

94. LoheAR, HillikerAJ, RobertsPA (1993) Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

95. PimpinelliS, BerlocoM, FantiL, DimitriP, BonaccorsiS, et al. (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92: 3804–3808.

96. LuoK, YuanJ, ChenJ, LouZ (2009) Topoisomearase II alpha controls the decatenation checkpoint. Nat Cell Biol 11: 204–210.

97. CugusiS, RamosE, LingH, YokoyamaR, LukKM, et al. (2013) Topoisomerase II plays a role in dosage compensation in Drosophila. Transcription 4: 1–13.

98. WangCI, AlekseyenkoAA, LeRoyG, EliaAE, GorchakovAA, et al. (2013) Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 20: 202–209.

99. KurzEU, WilsonSE, LeaderKB, SampeyBP, AllanWP, et al. (2002) The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol Cancer Ther 1: 121–131.

100. KimMS, BlakeM, BaekJH, KohlhagenG, PommierY, et al. (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63: 7291–7300.

101. KoundakjianEJ, CowanDM, HardyRW, BeckerAH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167: 203–206.

102. LattaoR, BonaccorsiS, GuanX, WassermanSA, GattiM (2011) Tubby-tagged balancers for the Drosophila X and second chromosomes. Fly (Austin) 5: 369–370.

103. LaurençonA, PurdyA, SekelskyJ, HawleyRS, SuTT (2003) Phenotypic analysis of separation-of-function alleles of MEI-41, Drosophila ATM/ATR. Genetics 164: 589–601.

104. SilvaE, TiongS, PedersenM, HomolaE, RoyouA, et al. (2004) ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr Biol 14: 1341–1347.

105. SommaMP, FasuloB, CenciG, CundariE, GattiM (2002) Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol Biol Cell 13: 2448–60.

106. BonaccorsiS, GiansantiMG, GattiM (2000) Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nat Cell Biol 2: 54–56.

107. CiapponiL, CenciG, DucauJ, FloresC, Johnson-SchlitzD, et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14: 1360–6.

108. RaffaGD, CenciG, SiriacoG, GoldbergML, GattiM (2005) The putative Drosophila transcription factor Woc is required to prevent telomeric fusions. Mol Cell 20: 821–31.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#