#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency


Accumulation of DNA damage has been implicated in aging. Many premature aging syndromes are due to defective DNA repair systems. The endonuclease XPG is involved in repair of helix-distorting DNA lesions, and XPG defects cause the cancer-prone condition xeroderma pigmentosum (XP) alone or combined with the severe neurodevelopmental progeroid disorder Cockayne syndrome (CS). Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid background- displays many progressive progeroid features, including early cessation of growth, cachexia, kyphosis, osteoporosis, neurodegeneration, liver aging, retinal degeneration, and reduced lifespan. In a constitutive mutant with a complex phenotype it is difficult to dissect cause and consequence. We have therefore generated liver- and forebrain-specific Xpg mutants and demonstrate that they exhibit progressive anisokaryosis and neurodegeneration, respectively, indicating that a cell-intrinsic repair defect in neurons can account for neuronal degeneration. These findings strengthen the link between DNA damage and the complex process of aging.


Vyšlo v časopise: Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004686
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004686

Souhrn

Accumulation of DNA damage has been implicated in aging. Many premature aging syndromes are due to defective DNA repair systems. The endonuclease XPG is involved in repair of helix-distorting DNA lesions, and XPG defects cause the cancer-prone condition xeroderma pigmentosum (XP) alone or combined with the severe neurodevelopmental progeroid disorder Cockayne syndrome (CS). Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid background- displays many progressive progeroid features, including early cessation of growth, cachexia, kyphosis, osteoporosis, neurodegeneration, liver aging, retinal degeneration, and reduced lifespan. In a constitutive mutant with a complex phenotype it is difficult to dissect cause and consequence. We have therefore generated liver- and forebrain-specific Xpg mutants and demonstrate that they exhibit progressive anisokaryosis and neurodegeneration, respectively, indicating that a cell-intrinsic repair defect in neurons can account for neuronal degeneration. These findings strengthen the link between DNA damage and the complex process of aging.


Zdroje

1. HanahanD, WeinbergRA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674.

2. Lopez-OtinC, BlascoMA, PartridgeL, SerranoM, KroemerG (2013) The hallmarks of aging. Cell 153: 1194–1217.

3. HoeijmakersJH (2009) DNA damage, aging, and cancer. N Engl J Med 361: 1475–1485.

4. HoeijmakersJH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

5. FagbemiAF, OrelliB, ScharerOD (2011) Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst) 10: 722–729.

6. FriedbergEC, AguileraA, GellertM, HanawaltPC, HaysJB, et al. (2006) DNA repair: from molecular mechanism to human disease. DNA Repair (Amst) 5: 986–996.

7. ScharerOD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5: a012609.

8. HanawaltPC (2008) Emerging links between premature ageing and defective DNA repair. Mech Ageing Dev 129: 503–505.

9. NaegeliH, SugasawaK (2011) The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst) 10: 673–683.

10. FousteriM, MullendersLH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18: 73–84.

11. VermeulenW, FousteriM (2013) Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol 5: a012625.

12. StaresincicL, FagbemiAF, EnzlinJH, GourdinAM, WijgersN, et al. (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28: 1111–1120.

13. EglyJM, CoinF (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 10: 714–721.

14. Giglia-MariG, CoinF, RanishJA, HoogstratenD, TheilA, et al. (2004) A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 36: 714–719.

15. ItoS, KuraokaI, ChymkowitchP, CompeE, TakedachiA, et al. (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26: 231–243.

16. Le MayN, FradinD, IltisI, BougneresP, EglyJM (2012) XPG and XPF Endonucleases Trigger Chromatin Looping and DNA Demethylation for Accurate Expression of Activated Genes. Mol Cell 47: 622–632.

17. ScharerOD (2008) XPG: its products and biological roles. Adv Exp Med Biol 637: 83–92.

18. LakeRJ, FanHY (2013) Structure, function and regulation of CSB: a multi-talented gymnast. Mech Ageing Dev 134: 202–211.

19. SuY, OrelliB, MadireddyA, NiedernhoferLJ, ScharerOD (2012) Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair. J Biol Chem 287: 21846–21855.

20. Klein DouwelD, BoonenRA, LongDT, SzypowskaAA, RaschleM, et al. (2014) XPF-ERCC1 Acts in Unhooking DNA Interstrand Crosslinks in Cooperation with FANCD2 and FANCP/SLX4. Mol Cell 54: 460–471.

21. AhmadA, RobinsonAR, DuensingA, van DrunenE, BeverlooHB, et al. (2008) ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol 28: 5082–5092.

22. D'ErricoM, ParlantiE, TesonM, de JesusBM, DeganP, et al. (2006) New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J 25: 4305–4315.

23. GorgelsTG, van der PluijmI, BrandtRM, GarinisGA, van SteegH, et al. (2007) Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol Cell Biol 27: 1433–1441.

24. MelisJP, LuijtenM, MullendersLH, van SteegH (2011) The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res 728: 107–117.

25. TrappC, ReiteK, KlunglandA, EpeB (2007) Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice. Oncogene 26: 4044–4048.

26. MenoniH, HoeijmakersJH, VermeulenW (2012) Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J Cell Biol 199: 1037–1046.

27. StevnsnerT, MuftuogluM, AamannMD, BohrVA (2008) The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev 129: 441–448.

28. KlunglandA, HossM, GunzD, ConstantinouA, ClarksonSG, et al. (1999) Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 3: 33–42.

29. BesshoT (1999) Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res 27: 979–983.

30. OyamaM, WakasugiM, HamaT, HashidumeH, IwakamiY, et al. (2004) Human NTH1 physically interacts with p53 and proliferating cell nuclear antigen. Biochem Biophys Res Commun 321: 183–191.

31. SarkerAH, TsutakawaSE, KostekS, NgC, ShinDS, et al. (2005) Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 20: 187–198.

32. BanerjeeD, MandalSM, DasA, HegdeML, DasS, et al. (2011) Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem 286: 6006–6016.

33. ReisAM, MillsWK, RamachandranI, FriedbergEC, ThompsonD, et al. (2012) Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res 40: 206–219.

34. GuoJ, HanawaltPC, SpivakG (2013) Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res 41: 7700–7712.

35. MarteijnJA, LansH, VermeulenW, HoeijmakersJH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15: 465–481.

36. DiGiovannaJJ, KraemerKH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermatol 132: 785–796.

37. StefaniniM, BottaE, LanzafameM, OrioliD (2010) Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair (Amst) 9: 2–10.

38. LaugelV, DallozC, DurandM, SauvanaudF, KristensenU, et al. (2010) Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 31: 113–126.

39. KraemerKH, PatronasNJ, SchiffmannR, BrooksBP, TamuraD, et al. (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145: 1388–1396.

40. AnttinenAKL, NikoskelainenE, PortinR, KurkiT, ErkinjunttiM, et al. (2008) Neurological symptoms and natural course of xeroderma pigmentosum. Brain 131: 1979–1989.

41. NakazawaY, SasakiK, MitsutakeN, MatsuseM, ShimadaM, et al. (2012) Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet 44: 586–592.

42. SchwertmanP, LagarouA, DekkersDH, RaamsA, van der HoekAC, et al. (2012) UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet 44: 598–602.

43. ZhangX, HoribataK, SaijoM, IshigamiC, UkaiA, et al. (2012) Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat Genet 44: 593–597.

44. FeiJ, ChenJ (2012) KIAA1530 is recruited by cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J Biol Chem 287: 35118–35126.

45. NataleV (2011) A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet A 155A: 1081–1095.

46. BrooksPJ (2013) Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. DNA Repair (Amst) 12: 656–671.

47. ChoI, TsaiPF, LakeRJ, BasheerA, FanHY (2013) ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet 9: e1003407.

48. GreggSQ, RobinsonAR, NiedernhoferLJ (2011) Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease. DNA Repair (Amst) 10: 781–791.

49. JaspersNG, RaamsA, SilengoMC, WijgersN, NiedernhoferLJ, et al. (2007) First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet 80: 457–466.

50. KashiyamaK, NakazawaY, PilzDT, GuoC, ShimadaM, et al. (2013) Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet 92: 807–819.

51. NiedernhoferLJ, GarinisGA, RaamsA, LalaiAS, RobinsonAR, et al. (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444: 1038–1043.

52. LehmannJ, SchubertS, SchaferA, ApelA, LaspeP, et al. (2014) An unusual mutation in the XPG gene leads to an internal in-frame deletion and a XP/CS complex phenotype. Br J Dermatol E-pub ahead of print. doi:10.1111/bjd.13035

53. ScharerOD (2008) Hot topics in DNA repair: the molecular basis for different disease states caused by mutations in TFIIH and XPG. DNA Repair (Amst) 7: 339–344.

54. SchaferA, SchubertS, GratchevA, SeebodeC, ApelA, et al. (2013) Characterization of three XPG-defective patients identifies three missense mutations that impair repair and transcription. J Invest Dermatol 133: 1841–1849.

55. SoltysDT, RochaCR, LernerLK, de SouzaTA, MunfordV, et al. (2013) Novel XPG (ERCC5) mutations affect DNA repair and cell survival after ultraviolet but not oxidative stress. Hum Mutat 34: 481–489.

56. NouspikelT, LalleP, LeadonSA, CooperPK, ClarksonSG (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci U S A 94: 3116–3121.

57. EmmertS, SlorH, BuschDB, BatkoS, AlbertRB, et al. (2002) Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients. J Invest Dermatol 118: 972–982.

58. SchaferA, GratchevA, SeebodeC, HofmannL, SchubertS, et al. (2013) Functional and molecular genetic analyses of nine newly identified XPD-deficient patients reveal a novel mutation resulting in TTD as well as in XP/CS complex phenotypes. Exp Dermatol 22: 486–489.

59. FriedbergEC, MeiraLB (2006) Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage Version 7. DNA Repair (Amst) 5: 189–209.

60. WijnhovenSW, HoogervorstEM, de WaardH, van der HorstGT, van SteegH (2007) Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mutat Res 614: 77–94.

61. NiedernhoferLJ (2008) Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair (Amst) 7: 1180–1189.

62. JaarsmaD, van der PluijmI, van der HorstGT, HoeijmakersJH (2013) Cockayne syndrome pathogenesis: Lessons from mouse models. Mech Ageing Dev 134: 180–195.

63. HaradaYN, ShiomiN, KoikeM, IkawaM, OkabeM, et al. (1999) Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 19: 2366–2372.

64. TianM, JonesDA, SmithM, ShinkuraR, AltFW (2004) Deficiency in the Nuclease Activity of Xeroderma Pigmentosum G in Mice Leads to Hypersensitivity to UV Irradiation. Mol Cell Biol 24: 2237–2242.

65. ShiomiN, KitoS, OyamaM, MatsunagaT, HaradaYN, et al. (2004) Identification of the XPG Region That Causes the Onset of Cockayne Syndrome by Using Xpg Mutant Mice Generated by the cDNA-Mediated Knock-In Method. Mol Cell Biol 24: 3712–3719.

66. ShiomiN, MoriM, KitoS, HaradaYN, TanakaK, et al. (2005) Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg. DNA Repair (Amst) 4: 351–357.

67. LaposaRR, HuangEJ, CleaverJE (2007) Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc Natl Acad Sci U S A 104: 1389–1394.

68. van der PluijmI, GarinisGA, BrandtRM, GorgelsTG, WijnhovenSW, et al. (2007) Impaired genome maintenance suppresses the growth hormone–insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol 5: e2.

69. MuraiM, EnokidoY, InamuraN, YoshinoM, NakatsuY, et al. (2001) Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc Natl Acad Sci U S A 98: 13379–13384.

70. AndressooJO, WeedaG, de WitJ, MitchellJR, BeemsRB, et al. (2009) An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol Cell Biol 29: 1276–1290.

71. AndressooJO, MitchellJR, de WitJ, HoogstratenD, VolkerM, et al. (2006) An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10: 121–132.

72. WeedaG, DonkerI, de WitJ, MorreauH, JanssensR, et al. (1997) Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7: 427–439.

73. SakaiK, MiyazakiJ (1997) A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem Biophys Res Commun 237: 318–324.

74. NakaneH, TakeuchiS, YubaS, SaijoM, NakatsuY, et al. (1995) High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 377: 165–168.

75. JaspersNG, RaamsA, KelnerMJ, NgJM, YamashitaYM, et al. (2002) Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst) 1: 1027–1038.

76. VoN, SeoHY, RobinsonA, SowaG, BentleyD, et al. (2010) Accelerated aging of intervertebral discs in a mouse model of progeria. J Orthop Res 28: 1600–1607.

77. de BoerJ, AndressooJO, de WitJ, HuijmansJ, BeemsRB, et al. (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276–1279.

78. NicolaijeC, DiderichKE, BotterSM, PriemelM, WaarsingJH, et al. (2012) Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice. PLoS ONE 7: e35246.

79. DiderichKE, NicolaijeC, PriemelM, WaarsingJH, DayJS, et al. (2012) Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice. Age (Dordr) 34: 845–861.

80. TianM, ShinkuraR, ShinkuraN, AltFW (2004) Growth Retardation, Early Death, and DNA Repair Defects in Mice Deficient for the Nucleotide Excision Repair Enzyme XPF. Mol Cell Biol 24: 1200–1205.

81. McWhirJ, SelfridgeJ, HarrisonDJ, SquiresS, MeltonDW (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5: 217–224.

82. GreggSQ, GutierrezV, RobinsonAR, WoodellT, NakaoA, et al. (2012) A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 55: 609–621.

83. SelfridgeJ, HsiaKT, RedheadNJ, MeltonDW (2001) Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene. Nucleic Acids Res 29: 4541–4550.

84. GarinisGA, UittenboogaardLM, StachelscheidH, FousteriM, van IjckenW, et al. (2009) Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat Cell Biol 11: 604–615.

85. van de VenM, AndressooJO, HolcombVB, von LindernM, JongWM, et al. (2006) Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice. PLoS Genet 2: e192.

86. KenslerTW, WakabayashiN, BiswalS (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47: 89–116.

87. el-DeiryWS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8: 345–357.

88. ChipchaseMD, O'NeillM, MeltonDW (2003) Characterization of premature liver polyploidy in DNA repair (Ercc1)-deficient mice. Hepatology 38: 958–966.

89. BorgesiusNZ, de WaardMC, van der PluijmI, OmraniA, ZondagGC, et al. (2011) Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 31: 12543–12553.

90. de WaardMC, van der PluijmI, Zuiderveen BorgesiusN, ComleyLH, HaasdijkED, et al. (2010) Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol 120: 461–475.

91. JaarsmaD, van der PluijmI, de WaardMC, HaasdijkED, BrandtR, et al. (2011) Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet 7: e1002405.

92. de GraafEL, VermeijWP, de WaardMC, RijksenY, van der PluijmI, et al. (2013) Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum. Mol Cell Proteomics 12: 1350–1362.

93. AdalbertR, ColemanMP (2013) Review: Axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 39: 90–108.

94. WeidenheimKM, DicksonDW, RapinI (2009) Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mech Ageing Dev 130: 619–636.

95. PosticC, ShiotaM, NiswenderKD, JettonTL, ChenY, et al. (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274: 305–315.

96. Beyer TAXW, TeupserD, auf dem KellerU, BugnonP, HildtE, et al. (2008) Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 9: 212–223.

97. ItohM, HayashiM, ShiodaK, MinagawaM, IsaF, et al. (1999) Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev 21: 326–333.

98. KoobM, LaugelV, DurandM, FothergillH, DallozC, et al. (2010) Neuroimaging in Cockayne syndrome. AJNR Am J Neuroradiol 31: 1623–1630.

99. HayashiM, Miwa-SaitoN, TanumaN, KubotaM (2012) Brain vascular changes in Cockayne syndrome. Neuropathology 32: 113–117.

100. IwasatoT, NomuraR, AndoR, IkedaT, TanakaM, et al. (2004) Dorsal telencephalon-specific expression of Cre recombinase in PAC transgenic mice. Genesis 38: 130–138.

101. LemonRN, JohanssonRS, WestlingG (1995) Corticospinal control during reach, grasp, and precision lift in man. J Neurosci 15: 6145–6156.

102. RotshenkerS (2009) The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 39: 99–103.

103. LeeSK, YuSL, PrakashL, PrakashS (2002) Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. implications for Cockayne syndrome. Cell 109: 823–834.

104. ThorelF, ConstantinouA, Dunand-SauthierI, NouspikelT, LalleP, et al. (2004) Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol Cell Biol 24: 10670–10680.

105. TregoKS, ChernikovaSB, DavalosAR, PerryJJ, FingerLD, et al. (2011) The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10: 1998–2007.

106. BraceLE, VoseSC, VargasDF, ZhaoS, WangXP, et al. (2013) Lifespan extension by dietary intervention in a mouse model of Cockayne syndrome uncouples early postnatal development from segmental progeria. Aging Cell 12: 1144–1147.

107. AndressooJO, JansJ, de WitJ, CoinF, HoogstratenD, et al. (2006) Rescue of progeria in trichothiodystrophy by homozygous lethal Xpd alleles. PLoS Biol 4: e322.

108. VermeulenW, JaekenJ, JaspersNG, BootsmaD, HoeijmakersJH (1993) Xeroderma pigmentosum complementation group G associated with Cockayne syndrome. Am J Hum Genet 53: 185–192.

109. SchumacherB, van der PluijmI, MoorhouseMJ, KosteasT, RobinsonAR, et al. (2008) Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 4: e1000161.

110. VermeijWP, HoeijmakersJHJ, PothofJ (2014) Aging: Not All DNA Damage is Equal. Curr Opin Genet Dev In press.

111. SunXZ, HaradaYN, TakahashiS, ShiomiN, ShiomiT (2001) Purkinje cell degeneration in mice lacking the xeroderma pigmentosum group G gene. J Neurosci Res 64: 348–354.

112. VeghMJ, de WaardMC, van der PluijmI, RidwanY, SassenMJ, et al. (2012) Synaptic proteome changes in a DNA repair deficient ercc1 mouse model of accelerated aging. J Proteome Res 11: 1855–1867.

113. MelisJP, WijnhovenSW, BeemsRB, RoodbergenM, van den BergJ, et al. (2008) Mouse models for xeroderma pigmentosum group A and group C show divergent cancer phenotypes. Cancer Res 68: 1347–1353.

114. LeeYJ, ParkSJ, CicconeSL, KimCR, LeeSH (2006) An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis 27: 446–453.

115. D'ErricoM, ParlantiE, TesonM, DeganP, LemmaT, et al. (2007) The role of CSA in the response to oxidative DNA damage in human cells. Oncogene 26: 4336–4343.

116. SpivakG, HanawaltPC (2006) Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst) 5: 13–22.

117. de WaardH, de WitJ, GorgelsTG, van den AardwegG, AndressooJO, et al. (2003) Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair (Amst) 2: 13–25.

118. de WaardH, de WitJ, AndressooJO, van OostromCT, RiisB, et al. (2004) Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol Cell Biol 24: 7941–7948.

119. HalliwellB (2003) Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters 540: 3–6.

120. TotonchyMB, TamuraD, PantellMS, ZalewskiC, BradfordPT, et al. (2013) Auditory analysis of xeroderma pigmentosum 1971–2012: hearing function, sun sensitivity and DNA repair predict neurological degeneration. Brain 136: 194–208.

121. SchaftJ, Ashery-PadanR, van der HoevenF, GrussP, StewartAF (2001) Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31: 6–10.

122. WaarsingJH, DayJS, WeinansH (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19: 1640–1650.

123. BotterSM, GlassonSS, HopkinsB, ClockaertsS, WeinansH, et al. (2009) ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthritis Cartilage 17: 636–645.

124. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#