-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS), also known as Charcot disease or Lou Gehrig's disease, is one of the most common neuromuscular diseases worldwide. This disease is characterized by a progressive degeneration of motor neurons, leading to patient death within a few years after onset. Despite the fact that most ALS cases are sporadic, most of the ALS genetic studies have focused on familial forms, leading to the genetic determination of cause for 70% of cases of familial ALS but for only 10% of sporadic ALS cases. This, coupled with the dearth of families available for study, suggests that researchers should begin tapping into the relatively untouched reservoir of available sporadic samples to identify novel genetic causes of sporadic ALS. Here we take advantage of high-throughput target sequencing techniques to test four different hypotheses about the genetic causes of ALS in sporadic ALS and uncover new candidate genes and pathways implicated in ALS.
Vyšlo v časopise: Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004704
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004704Souhrn
Amyotrophic lateral sclerosis (ALS), also known as Charcot disease or Lou Gehrig's disease, is one of the most common neuromuscular diseases worldwide. This disease is characterized by a progressive degeneration of motor neurons, leading to patient death within a few years after onset. Despite the fact that most ALS cases are sporadic, most of the ALS genetic studies have focused on familial forms, leading to the genetic determination of cause for 70% of cases of familial ALS but for only 10% of sporadic ALS cases. This, coupled with the dearth of families available for study, suggests that researchers should begin tapping into the relatively untouched reservoir of available sporadic samples to identify novel genetic causes of sporadic ALS. Here we take advantage of high-throughput target sequencing techniques to test four different hypotheses about the genetic causes of ALS in sporadic ALS and uncover new candidate genes and pathways implicated in ALS.
Zdroje
1. RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14 : 248–264.
2. KabashiE, ValdmanisPN, DionP, SpiegelmanD, McConkeyBJ, et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40 : 572–574.
3. van EsMA, DahlbergC, BirveA, VeldinkJH, van den BergLH, AndersenPM (2010) Large-scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81 : 562–566.
4. WuCH, FalliniC, TicozziN, KeaglePJ, SappPC, et al. (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488 : 499–503.
5. JohnsonBS, McCafferyJM, LindquistS, GitlerAD (2008) A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 105 : 6439–6444.
6. SunZ, DiazZ, FangX, HartMP, ChesiA, et al. (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9: e1000614.
7. CouthouisJ, HartMP, ShorterJ, DeJesus-HernandezM, ErionR, et al. (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108 : 20881–20890.
8. CouthouisJ, HartMP, ErionR, KingOD, DiazZ, et al. (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21 : 2899–2911.
9. KimHJ, KimNC, WangYD, ScarboroughEA, MooreJ, et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495 : 467–473.
10. HackmanP, SarparantaJ, LehtinenS, ViholaA, EviläA, et al. (2012) Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 73 : 500–509.
11. KlarJ, SobolM, MelbergA, MäbertK, AmeurA, et al. (2013) Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat 34 : 572–577.
12. KimHJ, RaphaelAR, LaDowES, McGurkL, WeberRA, et al. (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46 : 152–160.
13. VieiraNM, NaslavskyMS, LicinioL, KokF, SchlesingerD, et al. (2014) A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum Mol Genet 23 : 4103–4110.
14. TakahashiY, FukudaY, YoshimuraJ, ToyodaA, KurppaK, et al. (2013) ERBB4 Mutations that Disrupt the Neuregulin-ErbB4 Pathway Cause Amyotrophic Lateral Sclerosis Type 19. Am J Hum Genet 93 : 900–905.
15. ChesiA, StaahlBT, JovičićA, CouthouisJ, FasolinoM, et al. (2013) Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci 16 : 851–855.
16. RamananVK, SaykinAJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. Am J Neurodegener Dis 2 : 145–175.
17. SiddiqueT, Ajroud-DrissS (2011) Familial amyotrophic lateral sclerosis, a historical perspective. Acta Myol 30 : 117–120.
18. FoghI, RattiA, GelleraC, LinK, TilocaC, et al. (2014) A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 23 : 2220–2231.
19. RentonAE, MajounieE, WaiteA, Simón-SánchezJ, RollinsonS, et al. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72 : 257–268.
20. DeJesus-HernandezM, MackenzieIR, BoeveBF, BoxerAL, BakerM, et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72 : 245–256.
21. DengM, WeiL, ZuoX, TianY, XieF, et al. (2013) Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat Genet 45 : 697–700.
22. TalbotK (2010) Do twin studies still have anything to teach us about the genetics of amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 81 : 1299–1300.
23. Al-ChalabiA, FangF, HanbyMF, LeighPN, ShawCE, et al. (2010) An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 81 : 1324–1326.
24. WingoTS, CutlerDJ, YarabN, KellyCM, GlassJD (2011) The heritability of amyotrophic lateral sclerosis in a clinically ascertained United States research registry. PLoS One 6: e27985.
25. DeJesus-HernandezM, KocerhaJ, FinchN, CrookR, BakerM, et al. (2010) De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat 31: E1377–E1389.
26. ChiòA, CalvoA, MogliaC, OssolaI, BrunettiM, et al. (2011) A de novo missense mutation of the FUS gene in a "true" sporadic ALS case. Neurobiol Aging 32 : 553.e23–553.e26.
27. AlexanderMD, TraynorBJ, MillerN, CorrB, FrostE, et al. (2002) "True" sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol 52 : 680–683.
28. DaneshjouR, TatonettiNP, KarczewskiKJ, SagreiyaH, BourgeoisS, et al. (2013) Pathway analysis of genome-wide data improves warfarin dose prediction. BMC Genomics 14 Suppl 3: S11.
29. MooreCB, WallaceJR, FraseAT, PendergrassSA, RitchieMD (2013) BioBin: a bioinformatics tool for automating the binning of rare variants using publicly available biological knowledge. BMC Med Genomics 6 Suppl 2: S6.
30. StrangerBE, StahlEA, RajT (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187 : 367–383.
31. CouthouisJ, HartMP, ShorterJ, DeJesus-HernandezM, ErionR, et al. (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108 : 20881–20890.
32. KennaKP, McLaughlinRL, HardimanO, BradleyDG (2013) Using reference databases of genetic variation to evaluate the potential pathogenicity of candidate disease variants. Hum Mutat 34 : 836–841.
33. AndersenPM, NilssonP, Ala-HurulaV, KeränenML, TarvainenI, et al. (1995) Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 10 : 61–66.
34. NeumannM, BentmannE, DormannD, JawaidA, DeJesus-HernandezM, et al. (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134 : 2595–2609.
35. KennaKP, McLaughlinRL, ByrneS, ElaminM, HeverinM, et al. (2013) Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 50 : 776–783.
36. LattanteS, ConteA, ZollinoM, LuigettiM, Del GrandeA, et al. (2012) Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 79 : 66–72.
37. KwonMJ, BaekW, KiCS, KimHY, KohSH, et al. (2012) Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 33 : 1017.e17–1017.e23.
38. ChiòA, CalvoA, MazziniL, CantelloR, MoraG, et al. (2012) Extensive genetics of ALS: a population-based study in Italy. Neurology 79 : 1983–1989.
39. HadanoS, HandCK, OsugaH, YanagisawaY, OtomoA, et al. (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29 : 166–173.
40. YangY, HentatiA, DengHX, DabbaghO, SasakiT, et al. (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29 : 160–165.
41. ChenYZ, BennettCL, HuynhHM, BlairIP, PulsI, et al. (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74 : 1128–1135.
42. MoreiraMC, KlurS, WatanabeM, NémethAH, Le BerI, et al. (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36 : 225–227.
43. AsakaT, YokojiH, ItoJ, YamaguchiK, MatsushimaA (2006) Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX. Neurology 66 : 1580–1581.
44. ZhaoZH, ChenWZ, WuZY, WangN, ZhaoGX, et al. (2009) A novel mutation in the senataxin gene identified in a Chinese patient with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10 : 118–122.
45. EldenAC, KimHJ, HartMP, Chen-PlotkinAS, JohnsonBS, et al. (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466 : 1069–1075.
46. RutherfordNJ, DeJesus-HernandezM, BakerMC, KrystonTB, BrownPE, et al. (2012) C9ORF72 hexanucleotide repeat expansions in patients with ALS from the Coriell Cell Repository. Neurology 79 : 482–483.
47. van BlitterswijkM, van EsMA, HennekamEA, DooijesD, van RheenenW, et al. (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21 : 3776–3784.
48. DaoudH, ValdmanisPN, Gros-LouisF, BelzilV, SpiegelmanD, et al. (2011) Resequencing of 29 candidate genes in patients with familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68 : 587–593.
49. Dormann D, Haass C (2013) Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration. Mol Cell Neurosci.
50. DormannD, RoddeR, EdbauerD, BentmannE, FischerI, et al. (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29 : 2841–2857.
51. ChiòA, RestagnoG, BrunettiM, OssolaI, CalvoA, et al. (2009) Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol Aging 30 : 1272–1275.
52. BertolottiA, LutzY, HeardDJ, ChambonP, ToraL (1996) hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J 15 : 5022–5031.
53. GoldschmidtL, TengPK, RiekR, EisenbergD (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107 : 3487–3492.
54. WangXS, LeeS, SimmonsZ, BoyerP, ScottK, et al. (2004) Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci 227 : 27–33.
55. YenAA, SimpsonEP, HenkelJS, BeersDR, AppelSH (2004) HFE mutations are not strongly associated with sporadic ALS. Neurology 62 : 1611–1612.
56. KamelF, UmbachDM, LehmanTA, ParkLP, MunsatTL, et al. (2003) Amyotrophic lateral sclerosis, lead, and genetic susceptibility: polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ Health Perspect 111 : 1335–1339.
57. OlkowskiZL (1998) Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 9 : 239–242.
58. HaywardC, ColvilleS, SwinglerRJ, BrockDJ (1999) Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology 52 : 1899–1901.
59. TomkinsJ, DempsterS, BannerSJ, CooksonMR, ShawPJ (2000) Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS). Neuroreport 11 : 1695–1697.
60. CoppedèF, Lo GerfoA, CarlesiC, PiazzaS, MancusoM, et al. (2010) Lack of association between the APEX1 Asp148Glu polymorphism and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 31 : 353–355.
61. al-ChalabiA, EnayatZE, BakkerMC, ShamPC, BallDM, et al. (1996) Association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Lancet 347 : 159–160.
62. BachusR, BaderS, GessnerR, LudolphAC (1997) Lack of association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Ann Neurol 41 : 417.
63. DroryVE, BirnbaumM, KorczynAD, ChapmanJ (2001) Association of APOE epsilon4 allele with survival in amyotrophic lateral sclerosis. J Neurol Sci 190 : 17–20.
64. LiYJ, Pericak-VanceMA, HainesJL, SiddiqueN, McKenna-YasekD, et al. (2004) Apolipoprotein E is associated with age at onset of amyotrophic lateral sclerosis. Neurogenetics 5 : 209–213.
65. MoulardB, SefianiA, LaamriA, MalafosseA, CamuW (1996) Apolipoprotein E genotyping in sporadic amyotrophic lateral sclerosis: evidence for a major influence on the clinical presentation and prognosis. J Neurol Sci 139 Suppl: 34–37.
66. MuiS, RebeckGW, McKenna-YasekD, HymanBT, BrownRH (1995) Apolipoprotein E epsilon 4 allele is not associated with earlier age at onset in amyotrophic lateral sclerosis. Ann Neurol 38 : 460–463.
67. SiddiqueT, Pericak-VanceMA, CaliendoJ, HongST, HungWY, et al. (1998) Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis. Neurogenetics 1 : 213–216.
68. ZetterbergH, JacobssonJ, RosengrenL, BlennowK, AndersenPM (2008) Association of APOE with age at onset of sporadic amyotrophic lateral sclerosis. J Neurol Sci 273 : 67–69.
69. GoodallEF, GreenwayMJ, van MarionI, CarrollCB, HardimanO, et al. (2005) Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology 65 : 934–937.
70. HeX, LuX, HuJ, XiJ, ZhouD, et al. (2011) H63D polymorphism in the hemochromatosis gene is associated with sporadic amyotrophic lateral sclerosis in China. Eur J Neurol 18 : 359–361.
71. RestagnoG, LombardoF, GhiglioneP, CalvoA, CoccoE, et al. (2007) HFE H63D polymorphism is increased in patients with amyotrophic lateral sclerosis of Italian origin. J Neurol Neurosurg Psychiatry 78 : 327.
72. SutedjaNA, SinkeRJ, Van VughtPW, Van der LindenMW, WokkeJH, et al. (2007) The association between H63D mutations in HFE and amyotrophic lateral sclerosis in a Dutch population. Arch Neurol 64 : 63–67.
73. CoppedèF, MancusoM, Lo GerfoA, CarlesiC, PiazzaS, et al. (2007) Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis. Neurosci Lett 420 : 163–168.
74. CroninS, GreenwayMJ, PrehnJH, HardimanO (2007) Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78 : 984–986.
75. MorahanJM, YuB, TrentRJ, PamphlettR (2007) A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis. Neurotoxicology 28 : 532–540.
76. PencoS, BuscemaM, PatrossoMC, MarocchiA, GrossiE (2008) New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background. BMC Bioinformatics 9 : 254.
77. RicciC, BattistiniS, CozziL, BenigniM, OrigoneP, et al. (2011) Lack of association of PON polymorphisms with sporadic ALS in an Italian population. Neurobiol Aging 32 : 552.e7–552.13.
78. SlowikA, TomikB, WolkowPP, PartykaD, TurajW, et al. (2006) Paraoxonase gene polymorphisms and sporadic ALS. Neurology 67 : 766–770.
79. ValdmanisPN, KabashiE, DyckA, HinceP, LeeJ, et al. (2008) Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden. Neurology 71 : 514–520.
80. WillsAM, LandersJE, ZhangH, RichterRJ, CaraganisAJ, et al. (2008) Paraoxonase 1 (PON1) organophosphate hydrolysis is not reduced in ALS. Neurology 70 : 929–934.
81. SaundersonR, YuB, TrentRJ, PamphlettR (2004) A polymorphism in the poliovirus receptor gene differs in motor neuron disease. Neuroreport 15 : 383–386.
82. TomkinsJ, BannerSJ, McDermottCJ, ShawPJ (2001) Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis. Neuroreport 12 : 2319–2322.
83. Van LandeghemGF, TabatabaieP, BeckmanG, BeckmanL, AndersenPM (1999) Manganese-containing superoxide dismutase signal sequence polymorphism associated with sporadic motor neuron disease. Eur J Neurol 6 : 639–644.
84. TomblynM, KasarskisEJ, XuY, St ClairDK (1998) Distribution of MnSOD polymorphisms in sporadic ALS patients. J Mol Neurosci 10 : 65–66.
85. GreenwayMJ, AlexanderMD, EnnisS, TraynorBJ, CorrB, et al. (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63 : 1936–1938.
86. GreenwayMJ, AndersenPM, RussC, EnnisS, CashmanS, et al. (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38 : 411–413.
87. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2.
88. BedlackRS, StrittmatterWJ, MorgenlanderJC (2000) Apolipoprotein E and neuromuscular disease: a critical review of the literature. Arch Neurol 57 : 1561–1565.
89. FarrerLA, CupplesLA, HainesJL, HymanB, KukullWA, et al. (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278 : 1349–1356.
90. PayamiH, ZareparsiS, MonteeKR, SextonGJ, KayeJA, et al. (1996) Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 58 : 803–811.
91. BretskyPM, BuckwalterJG, SeemanTE, MillerCA, PoirierJ, et al. (1999) Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. Alzheimer Dis Assoc Disord 13 : 216–221.
92. CorderEH, GhebremedhinE, TaylorMG, ThalDR, OhmTG, et al. (2004) The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism. Ann N Y Acad Sci 1019 : 24–28.
93. PanasM, KaradimaG, KalfakisN, PsarrouO, FloroskoufiP, et al. (2000) Genotyping of presenilin-1 polymorphism in amyotrophic lateral sclerosis. J Neurol 247 : 940–942.
94. WeishauptJH, WaibelS, BirveA, VolkAE, MayerB, et al. (2013) A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany. Neurobiol Aging 34 : 1516.e9–1516.15.
95. van BlitterswijkM, van VughtPW, van EsMA, SchelhaasHJ, van der KooiAJ, et al. (2012) Novel optineurin mutations in sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 33 : 1016.e1–1016.e7.
96. SugiharaK, MaruyamaH, KamadaM, MorinoH, KawakamiH (2011) Screening for OPTN mutations in amyotrophic lateral sclerosis in a mainly Caucasian population. Neurobiol Aging 32 : 1923.e9–1923.10.
97. MillecampsS, BoilléeS, ChabrolE, CamuW, CazeneuveC, et al. (2011) Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiol Aging 32 : 557.e11–557.e13.
98. MaruyamaH, MorinoH, ItoH, IzumiY, KatoH, et al. (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465 : 223–226.
99. IidaA, HosonoN, SanoM, KameiT, OshimaS, et al. (2012) Optineurin mutations in Japanese amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 83 : 233–235.
100. JohnsonL, MillerJW, GkaziAS, VanceC, ToppSD, et al. (2012) Screening for OPTN mutations in a cohort of British amyotrophic lateral sclerosis patients. Neurobiol Aging 33 : 2948.e15–2948.e17.
101. Del BoR, TilocaC, PensatoV, CorradoL, RattiA, et al. (2011) Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82 : 1239–1243.
102. BelzilVV, DaoudH, DesjarlaisA, BouchardJP, DupréN, et al. (2011) Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis. Neurobiol Aging 32 : 555.e13–555.e14.
103. MorrisHR, WaiteAJ, WilliamsNM, NealJW, BlakeDJ (2012) Recent advances in the genetics of the ALS-FTLD complex. Curr Neurol Neurosci Rep 12 : 243–250.
104. ZurdelJ, FinckhU, MenzerG, NitschRM, RichardG (2002) CST3 genotype associated with exudative age related macular degeneration. Br J Ophthalmol 86 : 214–219.
105. SherringtonR, RogaevEI, LiangY, RogaevaEA, LevesqueG, et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375 : 754–760.
106. HarveyRJ, EllisonD, HardyJ, HuttonM, RoquesPK, et al. (1998) Chromosome 14 familial Alzheimer's disease: the clinical and neuropathological characteristics of a family with a leucine–>serine (L250S) substitution at codon 250 of the presenilin 1 gene. J Neurol Neurosurg Psychiatry 64 : 44–49.
107. AthanES, WilliamsonJ, CiappaA, SantanaV, RomasSN, et al. (2001) A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. JAMA 286 : 2257–2263.
108. MiklossyJ, TaddeiK, SuvaD, VerdileG, FonteJ, et al. (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer's disease. Neurobiol Aging 24 : 655–662.
109. StevaninG, SantorelliFM, AzzedineH, CoutinhoP, ChomilierJ, et al. (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 39 : 366–372.
110. OrlacchioA, BabaliniC, BorrecaA, PatronoC, MassaR, et al. (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133 : 591–598.
111. VissersLE, de LigtJ, GilissenC, JanssenI, SteehouwerM, et al. (2010) A de novo paradigm for mental retardation. Nat Genet 42 : 1109–1112.
112. GirardSL, GauthierJ, NoreauA, XiongL, ZhouS, et al. (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43 : 860–863.
113. XuB, RoosJL, DexheimerP, BooneB, PlummerB, et al. (2011) Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 43 : 864–868.
114. IossifovI, RonemusM, LevyD, WangZ, HakkerI, et al. (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74 : 285–299.
115. SandersSJ, MurthaMT, GuptaAR, MurdochJD, RaubesonMJ, et al. (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485 : 237–241.
116. NealeBM, KouY, LiuL, Ma′ayanA, SamochaKE, et al. (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485 : 242–245.
117. O′RoakBJ, VivesL, GirirajanS, KarakocE, KrummN, et al. (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485 : 246–250.
118. WuJI, LessardJ, OlaveIA, QiuZ, GhoshA, et al. (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56 : 94–108.
119. QiuZ, GhoshA (2008) A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60 : 775–787.
120. AizawaH, HuSC, BobbK, BalakrishnanK, InceG, et al. (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303 : 197–202.
121. StaahlBT, TangJ, WuW, SunA, GitlerAD, et al. (2013) Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J Neurosci 33 : 10348–10361.
122. TeyssouE, VandenbergheN, MoigneuC, BoilléeS, CouratierP, et al. (2014) Genetic analysis of SS18L1 in French amyotrophic lateral sclerosis. Neurobiol Aging 35 : 1213.e9–1213.e12.
123. PetrovskiS, WangQ, HeinzenEL, AllenAS, GoldsteinDB (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9: e1003709.
124. MonroyMA, RuhlDD, XuX, GrannerDK, YaciukP, ChriviaJC (2001) Regulation of cAMP-responsive element-binding protein-mediated transcription by the SNF2/SWI-related protein, SRCAP. J Biol Chem 276 : 40721–40726.
125. Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (1993) Floating-Harbor Syndrome–GeneReviews.
126. LiYR, KingOD, ShorterJ, GitlerAD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201 : 361–372.
127. KingOD, GitlerAD, ShorterJ (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462 : 61–80.
128. QueryCC, BentleyRC, KeeneJD (1989) A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57 : 89–101.
129. MoriK, LammichS, MackenzieIR, FornéI, ZilowS, et al. (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125 : 413–423.
130. KedershaN, StoecklinG, AyodeleM, YaconoP, Lykke-AndersenJ, et al. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169 : 871–884.
131. BentmannE, HaassC, DormannD (2013) Stress granules in neurodegeneration–lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280 : 4348–4370.
132. AnderssonMK, StåhlbergA, ArvidssonY, OlofssonA, SembH, et al. (2008) The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 9 : 37.
133. WolozinB (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7 : 56.
134. FigleyMD, BieriG, KolaitisRM, TaylorJP, GitlerAD (2014) Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 34 : 8083–8097.
135. van EsMA, DiekstraFP, VeldinkJH, BaasF, BourquePR, et al. (2009) A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. Neurology 72 : 287–288.
136. MillecampsS, SalachasF, CazeneuveC, GordonP, BrickaB, et al. (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47 : 554–560.
137. PaubelA, VioletteJ, AmyM, PralineJ, MeiningerV, et al. (2008) Mutations of the ANG gene in French patients with sporadic amyotrophic lateral sclerosis. Arch Neurol 65 : 1333–1336.
138. GelleraC, ColombritaC, TicozziN, CastellottiB, BragatoC, et al. (2008) Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9 : 33–40.
139. WuD, YuW, KishikawaH, FolkerthRD, IafrateAJ, et al. (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62 : 609–617.
140. HoodRL, LinesMA, NikkelSM, SchwartzentruberJ, BeaulieuC, et al. (2012) Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am J Hum Genet 90 : 308–313.
141. MacArthurDG, ManolioTA, DimmockDP, RehmHL, ShendureJ, et al. (2014) Guidelines for investigating causality of sequence variants in human disease. Nature 508 : 469–476.
142. MajounieE, RentonAE, MokK, DopperEG, WaiteA, et al. (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11 : 323–330.
143. AbelO, PowellJF, AndersenPM, Al-ChalabiA (2012) ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat 33 : 1345–1351.
144. CraigDW, PearsonJV, SzelingerS, SekarA, RedmanM, et al. (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5 : 887–893.
145. LangmeadB, SalzbergSL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9 : 357–359.
146. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 : 2078–2079.
147. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20 : 1297–1303.
148. DePristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43 : 491–498.
149. WangK, LiM, HakonarsonH (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164.
150. FayMP (2010) Confidence intervals that match Fisher's exact or Blaker's exact tests. Biostatistics 11 : 373–374.
151. AdzhubeiIA, SchmidtS, PeshkinL, RamenskyVE, GerasimovaA, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7 : 248–249.
152. PollardKS, HubiszMJ, RosenbloomKR, SiepelA (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20 : 110–121.
153. NgPC, HenikoffS (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31 : 3812–3814.
154. RamenskyV, BorkP, SunyaevS (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30 : 3894–3900.
155. SchwarzJM, RödelspergerC, SchuelkeM, SeelowD (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7 : 575–576.
Štítky
Genetika Reprodukčná medicína
Článek Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 LociČlánek The Kinesin AtPSS1 Promotes Synapsis and is Required for Proper Crossover Distribution in MeiosisČlánek Payoffs, Not Tradeoffs, in the Adaptation of a Virus to Ostensibly Conflicting Selective PressuresČlánek Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome ReductionČlánek BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian SkinČlánek Role of STN1 and DNA Polymerase α in Telomere Stability and Genome-Wide Replication in ArabidopsisČlánek RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress ResponseČlánek Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping StudiesČlánek Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation inČlánek Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice ( L.) SeedlingsČlánek Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK PathwayČlánek Signature Gene Expression Reveals Novel Clues to the Molecular Mechanisms of Dimorphic Transition inČlánek A Mouse Model Uncovers LKB1 as an UVB-Induced DNA Damage Sensor Mediating CDKN1A (p21) DegradationČlánek Dominant Sequences of Human Major Histocompatibility Complex Conserved Extended Haplotypes from to
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 10- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- An Deletion Is Highly Associated with a Juvenile-Onset Inherited Polyneuropathy in Leonberger and Saint Bernard Dogs
- Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1
- Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci
- Basement Membrane and Cell Integrity of Self-Tissues in Maintaining Immunological Tolerance
- The Kinesin AtPSS1 Promotes Synapsis and is Required for Proper Crossover Distribution in Meiosis
- Germline Mutations in Are Associated with Familial Gastric Cancer
- POT1a and Components of CST Engage Telomerase and Regulate Its Activity in
- Controlling Meiotic Recombinational Repair – Specifying the Roles of ZMMs, Sgs1 and Mus81/Mms4 in Crossover Formation
- Payoffs, Not Tradeoffs, in the Adaptation of a Virus to Ostensibly Conflicting Selective Pressures
- FHIT Suppresses Epithelial-Mesenchymal Transition (EMT) and Metastasis in Lung Cancer through Modulation of MicroRNAs
- Genome-Wide Mapping of Yeast RNA Polymerase II Termination
- Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction
- White Cells Facilitate Opposite- and Same-Sex Mating of Opaque Cells in
- BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian Skin
- Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation
- COE Loss-of-Function Analysis Reveals a Genetic Program Underlying Maintenance and Regeneration of the Nervous System in Planarians
- Fat-Dachsous Signaling Coordinates Cartilage Differentiation and Polarity during Craniofacial Development
- Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse
- Sensors at Centrosomes Reveal Determinants of Local Separase Activity
- Genes Integrate and Hedgehog Pathways in the Second Heart Field for Cardiac Septation
- Systematic Dissection of Coding Exons at Single Nucleotide Resolution Supports an Additional Role in Cell-Specific Transcriptional Regulation
- Recovery from an Acute Infection in Requires the GATA Transcription Factor ELT-2
- HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst
- Role of and in Development of Abdominal Epithelia Breaks Posterior Prevalence Rule
- The Formation of Endoderm-Derived Taste Sensory Organs Requires a -Dependent Expansion of Embryonic Taste Bud Progenitor Cells
- Role of STN1 and DNA Polymerase α in Telomere Stability and Genome-Wide Replication in Arabidopsis
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- Encodes the Catalytic Subunit of N Alpha-Acetyltransferase that Regulates Development, Metabolism and Adult Lifespan
- Disruption of SUMO-Specific Protease 2 Induces Mitochondria Mediated Neurodegeneration
- Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in
- It's All in Your Mind: Determining Germ Cell Fate by Neuronal IRE-1 in
- A Conserved Role for Homologs in Protecting Dopaminergic Neurons from Oxidative Stress
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- An AGEF-1/Arf GTPase/AP-1 Ensemble Antagonizes LET-23 EGFR Basolateral Localization and Signaling during Vulva Induction
- The Proteomic Landscape of the Suprachiasmatic Nucleus Clock Reveals Large-Scale Coordination of Key Biological Processes
- RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response
- A Complex Genetic Switch Involving Overlapping Divergent Promoters and DNA Looping Regulates Expression of Conjugation Genes of a Gram-positive Plasmid
- ZTF-8 Interacts with the 9-1-1 Complex and Is Required for DNA Damage Response and Double-Strand Break Repair in the Germline
- Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies
- Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment
- Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in
- Telomeric (s) in spp. Encode Mediator Subunits That Regulate Distinct Virulence Traits
- Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice ( L.) Seedlings
- Ancient Expansion of the Hox Cluster in Lepidoptera Generated Four Homeobox Genes Implicated in Extra-Embryonic Tissue Formation
- Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ
- A Mutation in the Mouse Gene Leads to Impaired Hedgehog Signaling
- Keeping mtDNA in Shape between Generations
- Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis
- TIF-IA-Dependent Regulation of Ribosome Synthesis in Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth
- At Short Telomeres Tel1 Directs Early Replication and Phosphorylates Rif1
- Evidence of a Bacterial Receptor for Lysozyme: Binding of Lysozyme to the Anti-σ Factor RsiV Controls Activation of the ECF σ Factor σ
- Hsp40s Specify Functions of Hsp104 and Hsp90 Protein Chaperone Machines
- Feeding State, Insulin and NPR-1 Modulate Chemoreceptor Gene Expression via Integration of Sensory and Circuit Inputs
- Functional Interaction between Ribosomal Protein L6 and RbgA during Ribosome Assembly
- Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in
- Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback
- Mmp1 Processing of the PDF Neuropeptide Regulates Circadian Structural Plasticity of Pacemaker Neurons
- The Nuclear Immune Receptor Is Required for -Dependent Constitutive Defense Activation in
- Genetic Modifiers of Neurofibromatosis Type 1-Associated Café-au-Lait Macule Count Identified Using Multi-platform Analysis
- Juvenile Hormone-Receptor Complex Acts on and to Promote Polyploidy and Vitellogenesis in the Migratory Locust
- Uncovering Enhancer Functions Using the α-Globin Locus
- The Analysis of Mutant Alleles of Different Strength Reveals Multiple Functions of Topoisomerase 2 in Regulation of Chromosome Structure
- Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway
- The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in
- The DAF-16 FOXO Transcription Factor Regulates to Modulate Stress Resistance in , Linking Insulin/IGF-1 Signaling to Protein N-Terminal Acetylation
- Genetic Influences on Translation in Yeast
- Analysis of Mutants Defective in the Cdk8 Module of Mediator Reveal Links between Metabolism and Biofilm Formation
- Ribosomal Readthrough at a Short UGA Stop Codon Context Triggers Dual Localization of Metabolic Enzymes in Fungi and Animals
- Gene Duplication Restores the Viability of Δ and Δ Mutants
- Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 ()
- Break-Induced Replication Requires DNA Damage-Induced Phosphorylation of Pif1 and Leads to Telomere Lengthening
- Dynamic Partnership between TFIIH, PGC-1α and SIRT1 Is Impaired in Trichothiodystrophy
- Signature Gene Expression Reveals Novel Clues to the Molecular Mechanisms of Dimorphic Transition in
- Mutations in Moderate or Severe Intellectual Disability
- Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex
- A Role for Taiman in Insect Metamorphosis
- The Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5′-UTR Variant
- MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants
- Coexistence and Within-Host Evolution of Diversified Lineages of Hypermutable in Long-term Cystic Fibrosis Infections
- Comprehensive Mapping of the Flagellar Regulatory Network
- Topoisomerase II Is Required for the Proper Separation of Heterochromatic Regions during Female Meiosis
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress
- H2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by Coordinating Rad53 Activation and Chromatin Assembly
- Copy Number Variation in the Horse Genome
- Unifying Genetic Canalization, Genetic Constraint, and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in
- Spinster Homolog 2 () Deficiency Causes Early Onset Progressive Hearing Loss
- Genome-Wide Discovery of Drug-Dependent Human Liver Regulatory Elements
- Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in
- Protein Phosphatase 4 Promotes Chromosome Pairing and Synapsis, and Contributes to Maintaining Crossover Competence with Increasing Age
- The bHLH-PAS Transcription Factor Dysfusion Regulates Tarsal Joint Formation in Response to Notch Activity during Leg Development
- A Mouse Model Uncovers LKB1 as an UVB-Induced DNA Damage Sensor Mediating CDKN1A (p21) Degradation
- Notch3 Interactome Analysis Identified WWP2 as a Negative Regulator of Notch3 Signaling in Ovarian Cancer
- An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development
- Dominant Sequences of Human Major Histocompatibility Complex Conserved Extended Haplotypes from to
- The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport
- A Gain-of-Function Mutation in Impeded Bone Development through Increasing Expression in DA2B Mice
- Nephronophthisis-Associated Regulates Cell Cycle Progression, Apoptosis and Epithelial-to-Mesenchymal Transition
- Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex
- The Not5 Subunit of the Ccr4-Not Complex Connects Transcription and Translation
- Abnormal Dosage of Ultraconserved Elements Is Highly Disfavored in Healthy Cells but Not Cancer Cells
- Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria
- The Chromosomal Association of the Smc5/6 Complex Depends on Cohesion and Predicts the Level of Sister Chromatid Entanglement
- Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy