Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis


Amyotrophic lateral sclerosis (ALS), also known as Charcot disease or Lou Gehrig's disease, is one of the most common neuromuscular diseases worldwide. This disease is characterized by a progressive degeneration of motor neurons, leading to patient death within a few years after onset. Despite the fact that most ALS cases are sporadic, most of the ALS genetic studies have focused on familial forms, leading to the genetic determination of cause for 70% of cases of familial ALS but for only 10% of sporadic ALS cases. This, coupled with the dearth of families available for study, suggests that researchers should begin tapping into the relatively untouched reservoir of available sporadic samples to identify novel genetic causes of sporadic ALS. Here we take advantage of high-throughput target sequencing techniques to test four different hypotheses about the genetic causes of ALS in sporadic ALS and uncover new candidate genes and pathways implicated in ALS.


Vyšlo v časopise: Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004704
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pgen.1004704

Souhrn

Amyotrophic lateral sclerosis (ALS), also known as Charcot disease or Lou Gehrig's disease, is one of the most common neuromuscular diseases worldwide. This disease is characterized by a progressive degeneration of motor neurons, leading to patient death within a few years after onset. Despite the fact that most ALS cases are sporadic, most of the ALS genetic studies have focused on familial forms, leading to the genetic determination of cause for 70% of cases of familial ALS but for only 10% of sporadic ALS cases. This, coupled with the dearth of families available for study, suggests that researchers should begin tapping into the relatively untouched reservoir of available sporadic samples to identify novel genetic causes of sporadic ALS. Here we take advantage of high-throughput target sequencing techniques to test four different hypotheses about the genetic causes of ALS in sporadic ALS and uncover new candidate genes and pathways implicated in ALS.


Zdroje

1. RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14: 248–264.

2. KabashiE, ValdmanisPN, DionP, SpiegelmanD, McConkeyBJ, et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40: 572–574.

3. van EsMA, DahlbergC, BirveA, VeldinkJH, van den BergLH, AndersenPM (2010) Large-scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81: 562–566.

4. WuCH, FalliniC, TicozziN, KeaglePJ, SappPC, et al. (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488: 499–503.

5. JohnsonBS, McCafferyJM, LindquistS, GitlerAD (2008) A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 105: 6439–6444.

6. SunZ, DiazZ, FangX, HartMP, ChesiA, et al. (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9: e1000614.

7. CouthouisJ, HartMP, ShorterJ, DeJesus-HernandezM, ErionR, et al. (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108: 20881–20890.

8. CouthouisJ, HartMP, ErionR, KingOD, DiazZ, et al. (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21: 2899–2911.

9. KimHJ, KimNC, WangYD, ScarboroughEA, MooreJ, et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467–473.

10. HackmanP, SarparantaJ, LehtinenS, ViholaA, EviläA, et al. (2012) Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 73: 500–509.

11. KlarJ, SobolM, MelbergA, MäbertK, AmeurA, et al. (2013) Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat 34: 572–577.

12. KimHJ, RaphaelAR, LaDowES, McGurkL, WeberRA, et al. (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46: 152–160.

13. VieiraNM, NaslavskyMS, LicinioL, KokF, SchlesingerD, et al. (2014) A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum Mol Genet 23: 4103–4110.

14. TakahashiY, FukudaY, YoshimuraJ, ToyodaA, KurppaK, et al. (2013) ERBB4 Mutations that Disrupt the Neuregulin-ErbB4 Pathway Cause Amyotrophic Lateral Sclerosis Type 19. Am J Hum Genet 93: 900–905.

15. ChesiA, StaahlBT, JovičićA, CouthouisJ, FasolinoM, et al. (2013) Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci 16: 851–855.

16. RamananVK, SaykinAJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. Am J Neurodegener Dis 2: 145–175.

17. SiddiqueT, Ajroud-DrissS (2011) Familial amyotrophic lateral sclerosis, a historical perspective. Acta Myol 30: 117–120.

18. FoghI, RattiA, GelleraC, LinK, TilocaC, et al. (2014) A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 23: 2220–2231.

19. RentonAE, MajounieE, WaiteA, Simón-SánchezJ, RollinsonS, et al. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72: 257–268.

20. DeJesus-HernandezM, MackenzieIR, BoeveBF, BoxerAL, BakerM, et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72: 245–256.

21. DengM, WeiL, ZuoX, TianY, XieF, et al. (2013) Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat Genet 45: 697–700.

22. TalbotK (2010) Do twin studies still have anything to teach us about the genetics of amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 81: 1299–1300.

23. Al-ChalabiA, FangF, HanbyMF, LeighPN, ShawCE, et al. (2010) An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 81: 1324–1326.

24. WingoTS, CutlerDJ, YarabN, KellyCM, GlassJD (2011) The heritability of amyotrophic lateral sclerosis in a clinically ascertained United States research registry. PLoS One 6: e27985.

25. DeJesus-HernandezM, KocerhaJ, FinchN, CrookR, BakerM, et al. (2010) De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat 31: E1377–E1389.

26. ChiòA, CalvoA, MogliaC, OssolaI, BrunettiM, et al. (2011) A de novo missense mutation of the FUS gene in a "true" sporadic ALS case. Neurobiol Aging 32: 553.e23–553.e26.

27. AlexanderMD, TraynorBJ, MillerN, CorrB, FrostE, et al. (2002) "True" sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol 52: 680–683.

28. DaneshjouR, TatonettiNP, KarczewskiKJ, SagreiyaH, BourgeoisS, et al. (2013) Pathway analysis of genome-wide data improves warfarin dose prediction. BMC Genomics 14 Suppl 3: S11.

29. MooreCB, WallaceJR, FraseAT, PendergrassSA, RitchieMD (2013) BioBin: a bioinformatics tool for automating the binning of rare variants using publicly available biological knowledge. BMC Med Genomics 6 Suppl 2: S6.

30. StrangerBE, StahlEA, RajT (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187: 367–383.

31. CouthouisJ, HartMP, ShorterJ, DeJesus-HernandezM, ErionR, et al. (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108: 20881–20890.

32. KennaKP, McLaughlinRL, HardimanO, BradleyDG (2013) Using reference databases of genetic variation to evaluate the potential pathogenicity of candidate disease variants. Hum Mutat 34: 836–841.

33. AndersenPM, NilssonP, Ala-HurulaV, KeränenML, TarvainenI, et al. (1995) Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 10: 61–66.

34. NeumannM, BentmannE, DormannD, JawaidA, DeJesus-HernandezM, et al. (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134: 2595–2609.

35. KennaKP, McLaughlinRL, ByrneS, ElaminM, HeverinM, et al. (2013) Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 50: 776–783.

36. LattanteS, ConteA, ZollinoM, LuigettiM, Del GrandeA, et al. (2012) Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 79: 66–72.

37. KwonMJ, BaekW, KiCS, KimHY, KohSH, et al. (2012) Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 33: 1017.e17–1017.e23.

38. ChiòA, CalvoA, MazziniL, CantelloR, MoraG, et al. (2012) Extensive genetics of ALS: a population-based study in Italy. Neurology 79: 1983–1989.

39. HadanoS, HandCK, OsugaH, YanagisawaY, OtomoA, et al. (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29: 166–173.

40. YangY, HentatiA, DengHX, DabbaghO, SasakiT, et al. (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29: 160–165.

41. ChenYZ, BennettCL, HuynhHM, BlairIP, PulsI, et al. (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74: 1128–1135.

42. MoreiraMC, KlurS, WatanabeM, NémethAH, Le BerI, et al. (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36: 225–227.

43. AsakaT, YokojiH, ItoJ, YamaguchiK, MatsushimaA (2006) Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX. Neurology 66: 1580–1581.

44. ZhaoZH, ChenWZ, WuZY, WangN, ZhaoGX, et al. (2009) A novel mutation in the senataxin gene identified in a Chinese patient with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10: 118–122.

45. EldenAC, KimHJ, HartMP, Chen-PlotkinAS, JohnsonBS, et al. (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466: 1069–1075.

46. RutherfordNJ, DeJesus-HernandezM, BakerMC, KrystonTB, BrownPE, et al. (2012) C9ORF72 hexanucleotide repeat expansions in patients with ALS from the Coriell Cell Repository. Neurology 79: 482–483.

47. van BlitterswijkM, van EsMA, HennekamEA, DooijesD, van RheenenW, et al. (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21: 3776–3784.

48. DaoudH, ValdmanisPN, Gros-LouisF, BelzilV, SpiegelmanD, et al. (2011) Resequencing of 29 candidate genes in patients with familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68: 587–593.

49. Dormann D, Haass C (2013) Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration. Mol Cell Neurosci.

50. DormannD, RoddeR, EdbauerD, BentmannE, FischerI, et al. (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29: 2841–2857.

51. ChiòA, RestagnoG, BrunettiM, OssolaI, CalvoA, et al. (2009) Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol Aging 30: 1272–1275.

52. BertolottiA, LutzY, HeardDJ, ChambonP, ToraL (1996) hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J 15: 5022–5031.

53. GoldschmidtL, TengPK, RiekR, EisenbergD (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107: 3487–3492.

54. WangXS, LeeS, SimmonsZ, BoyerP, ScottK, et al. (2004) Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci 227: 27–33.

55. YenAA, SimpsonEP, HenkelJS, BeersDR, AppelSH (2004) HFE mutations are not strongly associated with sporadic ALS. Neurology 62: 1611–1612.

56. KamelF, UmbachDM, LehmanTA, ParkLP, MunsatTL, et al. (2003) Amyotrophic lateral sclerosis, lead, and genetic susceptibility: polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ Health Perspect 111: 1335–1339.

57. OlkowskiZL (1998) Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 9: 239–242.

58. HaywardC, ColvilleS, SwinglerRJ, BrockDJ (1999) Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology 52: 1899–1901.

59. TomkinsJ, DempsterS, BannerSJ, CooksonMR, ShawPJ (2000) Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS). Neuroreport 11: 1695–1697.

60. CoppedèF, Lo GerfoA, CarlesiC, PiazzaS, MancusoM, et al. (2010) Lack of association between the APEX1 Asp148Glu polymorphism and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 31: 353–355.

61. al-ChalabiA, EnayatZE, BakkerMC, ShamPC, BallDM, et al. (1996) Association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Lancet 347: 159–160.

62. BachusR, BaderS, GessnerR, LudolphAC (1997) Lack of association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Ann Neurol 41: 417.

63. DroryVE, BirnbaumM, KorczynAD, ChapmanJ (2001) Association of APOE epsilon4 allele with survival in amyotrophic lateral sclerosis. J Neurol Sci 190: 17–20.

64. LiYJ, Pericak-VanceMA, HainesJL, SiddiqueN, McKenna-YasekD, et al. (2004) Apolipoprotein E is associated with age at onset of amyotrophic lateral sclerosis. Neurogenetics 5: 209–213.

65. MoulardB, SefianiA, LaamriA, MalafosseA, CamuW (1996) Apolipoprotein E genotyping in sporadic amyotrophic lateral sclerosis: evidence for a major influence on the clinical presentation and prognosis. J Neurol Sci 139 Suppl: 34–37.

66. MuiS, RebeckGW, McKenna-YasekD, HymanBT, BrownRH (1995) Apolipoprotein E epsilon 4 allele is not associated with earlier age at onset in amyotrophic lateral sclerosis. Ann Neurol 38: 460–463.

67. SiddiqueT, Pericak-VanceMA, CaliendoJ, HongST, HungWY, et al. (1998) Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis. Neurogenetics 1: 213–216.

68. ZetterbergH, JacobssonJ, RosengrenL, BlennowK, AndersenPM (2008) Association of APOE with age at onset of sporadic amyotrophic lateral sclerosis. J Neurol Sci 273: 67–69.

69. GoodallEF, GreenwayMJ, van MarionI, CarrollCB, HardimanO, et al. (2005) Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology 65: 934–937.

70. HeX, LuX, HuJ, XiJ, ZhouD, et al. (2011) H63D polymorphism in the hemochromatosis gene is associated with sporadic amyotrophic lateral sclerosis in China. Eur J Neurol 18: 359–361.

71. RestagnoG, LombardoF, GhiglioneP, CalvoA, CoccoE, et al. (2007) HFE H63D polymorphism is increased in patients with amyotrophic lateral sclerosis of Italian origin. J Neurol Neurosurg Psychiatry 78: 327.

72. SutedjaNA, SinkeRJ, Van VughtPW, Van der LindenMW, WokkeJH, et al. (2007) The association between H63D mutations in HFE and amyotrophic lateral sclerosis in a Dutch population. Arch Neurol 64: 63–67.

73. CoppedèF, MancusoM, Lo GerfoA, CarlesiC, PiazzaS, et al. (2007) Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis. Neurosci Lett 420: 163–168.

74. CroninS, GreenwayMJ, PrehnJH, HardimanO (2007) Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78: 984–986.

75. MorahanJM, YuB, TrentRJ, PamphlettR (2007) A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis. Neurotoxicology 28: 532–540.

76. PencoS, BuscemaM, PatrossoMC, MarocchiA, GrossiE (2008) New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background. BMC Bioinformatics 9: 254.

77. RicciC, BattistiniS, CozziL, BenigniM, OrigoneP, et al. (2011) Lack of association of PON polymorphisms with sporadic ALS in an Italian population. Neurobiol Aging 32: 552.e7–552.13.

78. SlowikA, TomikB, WolkowPP, PartykaD, TurajW, et al. (2006) Paraoxonase gene polymorphisms and sporadic ALS. Neurology 67: 766–770.

79. ValdmanisPN, KabashiE, DyckA, HinceP, LeeJ, et al. (2008) Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden. Neurology 71: 514–520.

80. WillsAM, LandersJE, ZhangH, RichterRJ, CaraganisAJ, et al. (2008) Paraoxonase 1 (PON1) organophosphate hydrolysis is not reduced in ALS. Neurology 70: 929–934.

81. SaundersonR, YuB, TrentRJ, PamphlettR (2004) A polymorphism in the poliovirus receptor gene differs in motor neuron disease. Neuroreport 15: 383–386.

82. TomkinsJ, BannerSJ, McDermottCJ, ShawPJ (2001) Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis. Neuroreport 12: 2319–2322.

83. Van LandeghemGF, TabatabaieP, BeckmanG, BeckmanL, AndersenPM (1999) Manganese-containing superoxide dismutase signal sequence polymorphism associated with sporadic motor neuron disease. Eur J Neurol 6: 639–644.

84. TomblynM, KasarskisEJ, XuY, St ClairDK (1998) Distribution of MnSOD polymorphisms in sporadic ALS patients. J Mol Neurosci 10: 65–66.

85. GreenwayMJ, AlexanderMD, EnnisS, TraynorBJ, CorrB, et al. (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63: 1936–1938.

86. GreenwayMJ, AndersenPM, RussC, EnnisS, CashmanS, et al. (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38: 411–413.

87. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2.

88. BedlackRS, StrittmatterWJ, MorgenlanderJC (2000) Apolipoprotein E and neuromuscular disease: a critical review of the literature. Arch Neurol 57: 1561–1565.

89. FarrerLA, CupplesLA, HainesJL, HymanB, KukullWA, et al. (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278: 1349–1356.

90. PayamiH, ZareparsiS, MonteeKR, SextonGJ, KayeJA, et al. (1996) Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 58: 803–811.

91. BretskyPM, BuckwalterJG, SeemanTE, MillerCA, PoirierJ, et al. (1999) Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. Alzheimer Dis Assoc Disord 13: 216–221.

92. CorderEH, GhebremedhinE, TaylorMG, ThalDR, OhmTG, et al. (2004) The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism. Ann N Y Acad Sci 1019: 24–28.

93. PanasM, KaradimaG, KalfakisN, PsarrouO, FloroskoufiP, et al. (2000) Genotyping of presenilin-1 polymorphism in amyotrophic lateral sclerosis. J Neurol 247: 940–942.

94. WeishauptJH, WaibelS, BirveA, VolkAE, MayerB, et al. (2013) A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany. Neurobiol Aging 34: 1516.e9–1516.15.

95. van BlitterswijkM, van VughtPW, van EsMA, SchelhaasHJ, van der KooiAJ, et al. (2012) Novel optineurin mutations in sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 33: 1016.e1–1016.e7.

96. SugiharaK, MaruyamaH, KamadaM, MorinoH, KawakamiH (2011) Screening for OPTN mutations in amyotrophic lateral sclerosis in a mainly Caucasian population. Neurobiol Aging 32: 1923.e9–1923.10.

97. MillecampsS, BoilléeS, ChabrolE, CamuW, CazeneuveC, et al. (2011) Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiol Aging 32: 557.e11–557.e13.

98. MaruyamaH, MorinoH, ItoH, IzumiY, KatoH, et al. (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465: 223–226.

99. IidaA, HosonoN, SanoM, KameiT, OshimaS, et al. (2012) Optineurin mutations in Japanese amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 83: 233–235.

100. JohnsonL, MillerJW, GkaziAS, VanceC, ToppSD, et al. (2012) Screening for OPTN mutations in a cohort of British amyotrophic lateral sclerosis patients. Neurobiol Aging 33: 2948.e15–2948.e17.

101. Del BoR, TilocaC, PensatoV, CorradoL, RattiA, et al. (2011) Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82: 1239–1243.

102. BelzilVV, DaoudH, DesjarlaisA, BouchardJP, DupréN, et al. (2011) Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis. Neurobiol Aging 32: 555.e13–555.e14.

103. MorrisHR, WaiteAJ, WilliamsNM, NealJW, BlakeDJ (2012) Recent advances in the genetics of the ALS-FTLD complex. Curr Neurol Neurosci Rep 12: 243–250.

104. ZurdelJ, FinckhU, MenzerG, NitschRM, RichardG (2002) CST3 genotype associated with exudative age related macular degeneration. Br J Ophthalmol 86: 214–219.

105. SherringtonR, RogaevEI, LiangY, RogaevaEA, LevesqueG, et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375: 754–760.

106. HarveyRJ, EllisonD, HardyJ, HuttonM, RoquesPK, et al. (1998) Chromosome 14 familial Alzheimer's disease: the clinical and neuropathological characteristics of a family with a leucine–>serine (L250S) substitution at codon 250 of the presenilin 1 gene. J Neurol Neurosurg Psychiatry 64: 44–49.

107. AthanES, WilliamsonJ, CiappaA, SantanaV, RomasSN, et al. (2001) A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. JAMA 286: 2257–2263.

108. MiklossyJ, TaddeiK, SuvaD, VerdileG, FonteJ, et al. (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer's disease. Neurobiol Aging 24: 655–662.

109. StevaninG, SantorelliFM, AzzedineH, CoutinhoP, ChomilierJ, et al. (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 39: 366–372.

110. OrlacchioA, BabaliniC, BorrecaA, PatronoC, MassaR, et al. (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133: 591–598.

111. VissersLE, de LigtJ, GilissenC, JanssenI, SteehouwerM, et al. (2010) A de novo paradigm for mental retardation. Nat Genet 42: 1109–1112.

112. GirardSL, GauthierJ, NoreauA, XiongL, ZhouS, et al. (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43: 860–863.

113. XuB, RoosJL, DexheimerP, BooneB, PlummerB, et al. (2011) Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 43: 864–868.

114. IossifovI, RonemusM, LevyD, WangZ, HakkerI, et al. (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74: 285–299.

115. SandersSJ, MurthaMT, GuptaAR, MurdochJD, RaubesonMJ, et al. (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485: 237–241.

116. NealeBM, KouY, LiuL, Ma′ayanA, SamochaKE, et al. (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485: 242–245.

117. O′RoakBJ, VivesL, GirirajanS, KarakocE, KrummN, et al. (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485: 246–250.

118. WuJI, LessardJ, OlaveIA, QiuZ, GhoshA, et al. (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56: 94–108.

119. QiuZ, GhoshA (2008) A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60: 775–787.

120. AizawaH, HuSC, BobbK, BalakrishnanK, InceG, et al. (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303: 197–202.

121. StaahlBT, TangJ, WuW, SunA, GitlerAD, et al. (2013) Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J Neurosci 33: 10348–10361.

122. TeyssouE, VandenbergheN, MoigneuC, BoilléeS, CouratierP, et al. (2014) Genetic analysis of SS18L1 in French amyotrophic lateral sclerosis. Neurobiol Aging 35: 1213.e9–1213.e12.

123. PetrovskiS, WangQ, HeinzenEL, AllenAS, GoldsteinDB (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9: e1003709.

124. MonroyMA, RuhlDD, XuX, GrannerDK, YaciukP, ChriviaJC (2001) Regulation of cAMP-responsive element-binding protein-mediated transcription by the SNF2/SWI-related protein, SRCAP. J Biol Chem 276: 40721–40726.

125. Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (1993) Floating-Harbor Syndrome–GeneReviews.

126. LiYR, KingOD, ShorterJ, GitlerAD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201: 361–372.

127. KingOD, GitlerAD, ShorterJ (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462: 61–80.

128. QueryCC, BentleyRC, KeeneJD (1989) A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57: 89–101.

129. MoriK, LammichS, MackenzieIR, FornéI, ZilowS, et al. (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125: 413–423.

130. KedershaN, StoecklinG, AyodeleM, YaconoP, Lykke-AndersenJ, et al. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169: 871–884.

131. BentmannE, HaassC, DormannD (2013) Stress granules in neurodegeneration–lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280: 4348–4370.

132. AnderssonMK, StåhlbergA, ArvidssonY, OlofssonA, SembH, et al. (2008) The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 9: 37.

133. WolozinB (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7: 56.

134. FigleyMD, BieriG, KolaitisRM, TaylorJP, GitlerAD (2014) Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 34: 8083–8097.

135. van EsMA, DiekstraFP, VeldinkJH, BaasF, BourquePR, et al. (2009) A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. Neurology 72: 287–288.

136. MillecampsS, SalachasF, CazeneuveC, GordonP, BrickaB, et al. (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47: 554–560.

137. PaubelA, VioletteJ, AmyM, PralineJ, MeiningerV, et al. (2008) Mutations of the ANG gene in French patients with sporadic amyotrophic lateral sclerosis. Arch Neurol 65: 1333–1336.

138. GelleraC, ColombritaC, TicozziN, CastellottiB, BragatoC, et al. (2008) Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9: 33–40.

139. WuD, YuW, KishikawaH, FolkerthRD, IafrateAJ, et al. (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62: 609–617.

140. HoodRL, LinesMA, NikkelSM, SchwartzentruberJ, BeaulieuC, et al. (2012) Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am J Hum Genet 90: 308–313.

141. MacArthurDG, ManolioTA, DimmockDP, RehmHL, ShendureJ, et al. (2014) Guidelines for investigating causality of sequence variants in human disease. Nature 508: 469–476.

142. MajounieE, RentonAE, MokK, DopperEG, WaiteA, et al. (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11: 323–330.

143. AbelO, PowellJF, AndersenPM, Al-ChalabiA (2012) ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat 33: 1345–1351.

144. CraigDW, PearsonJV, SzelingerS, SekarA, RedmanM, et al. (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5: 887–893.

145. LangmeadB, SalzbergSL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

146. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

147. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303.

148. DePristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498.

149. WangK, LiM, HakonarsonH (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164.

150. FayMP (2010) Confidence intervals that match Fisher's exact or Blaker's exact tests. Biostatistics 11: 373–374.

151. AdzhubeiIA, SchmidtS, PeshkinL, RamenskyVE, GerasimovaA, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249.

152. PollardKS, HubiszMJ, RosenbloomKR, SiepelA (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20: 110–121.

153. NgPC, HenikoffS (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812–3814.

154. RamenskyV, BorkP, SunyaevS (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3894–3900.

155. SchwarzJM, RödelspergerC, SchuelkeM, SeelowD (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7: 575–576.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz

Betablokátory a Ca antagonisté z jiného úhlu
Autori: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Autori: doc. MUDr. Petr Čáp, Ph.D.

Farmakoterapie akutní a chronické bolesti

Získaná hemofilie - Povědomí o nemoci a její diagnostika

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa