#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response


TDP-43 is linked to pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How TDP-43 contributes to the development of these degenerative diseases remains unsolved, and the full range of TDP-43 functions has yet to be established. In the present study, we explored a conversed function of TDP-43 in regulating protein homeostasis from C. elegans to mammals. Under conditions of stress, TDP-43 translocates from the nucleus to the cytoplasm, competes with FOXO transcription factors for binding to 14-3-3 proteins, and releases FOXO for nuclear translocation and activation. These data are consistent with the ability of TDP-43 to regulate protein aggregation. Together the results provide important insight into the role of TDP-43 in stress responses and disease mechanisms. Since chronic stress is associated with neurodegenerative diseases, the TDP-43 switch could be kept in overdrive mode in these disorders, with its capacity to buffer further stress and maintain protein homeostasis being compromised. This mechanism also suggests that other RNA-processing proteins that exhibit similar stress-induced behavior may be coupled to other cellular pathways to provide coordinated reprogramming in stress responses.


Vyšlo v časopise: RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004693
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004693

Souhrn

TDP-43 is linked to pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How TDP-43 contributes to the development of these degenerative diseases remains unsolved, and the full range of TDP-43 functions has yet to be established. In the present study, we explored a conversed function of TDP-43 in regulating protein homeostasis from C. elegans to mammals. Under conditions of stress, TDP-43 translocates from the nucleus to the cytoplasm, competes with FOXO transcription factors for binding to 14-3-3 proteins, and releases FOXO for nuclear translocation and activation. These data are consistent with the ability of TDP-43 to regulate protein aggregation. Together the results provide important insight into the role of TDP-43 in stress responses and disease mechanisms. Since chronic stress is associated with neurodegenerative diseases, the TDP-43 switch could be kept in overdrive mode in these disorders, with its capacity to buffer further stress and maintain protein homeostasis being compromised. This mechanism also suggests that other RNA-processing proteins that exhibit similar stress-induced behavior may be coupled to other cellular pathways to provide coordinated reprogramming in stress responses.


Zdroje

1. MartinDE, SoulardA, HallMN (2004) TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119: 969–979.

2. BergkesselM, WhitworthGB, GuthrieC (2011) Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast. RNA 17: 1461–1478.

3. HardingHP, NovoaI, ZhangY, ZengH, WekR, et al. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6: 1099–1108.

4. HolcikM, SonenbergN (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6: 318–327.

5. RonD, WalterP (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.

6. NeumannM, SampathuDM, KwongLK, TruaxAC, MicsenyiMC, et al. (2006) Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 314: 130–133.

7. SreedharanJ, BlairIP, TripathiVB, HuX, VanceC, et al. (2008) TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science 319: 1668–1672.

8. WegorzewskaI, BellS, CairnsNJ, MillerTM, BalohRH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106: 18809–18814.

9. JohnsonBS, SneadD, LeeJJ, McCafferyJM, ShorterJ, et al. (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284: 20329–20339.

10. ZhangY-J, XuY-F, CookC, GendronTF, RoettgesP, et al. (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106: 7607–7612.

11. KabashiE, LinL, TradewellML, DionPA, BercierV, et al. (2009) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19: 671–683.

12. CaccamoA, MajumderS, DengJJ, BaiY, ThorntonFB, et al. (2009) Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J Biol Chem 284: 27416–27424.

13. GuoW, ChenY, ZhouX, KarA, RayP, et al. (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18: 822–830.

14. HansonKA, KimSH, WassarmanDA, TibbettsRS (2010) Ubiquilin Modifies TDP-43 Toxicity in a Drosophila Model of Amyotrophic Lateral Sclerosis (ALS). J Biol Chem 285: 11068–11072.

15. AshPEA, ZhangY-J, RobertsCM, SaldiT, HutterH, et al. (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19: 3206–3218.

16. LiachkoNF, GuthrieCR, KraemerBC (2010) Phosphorylation Promotes Neurotoxicity in a Caenorhabditis elegans Model of TDP-43 Proteinopathy. J Neurosci 30: 16208–16219.

17. WilsH, KleinbergerG, JanssensJ, PeresonS, JorisG, et al. (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107: 3858–3863.

18. StallingsNR, PuttaparthiK, LutherCM, BurnsDK, ElliottJL (2010) Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 40: 404–414.

19. XuY-F, GendronTF, ZhangY-J, LinW-L, D'AltonS, et al. (2010) Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice. J Neurosci 30: 10851–10859.

20. ShanX, ChiangP, PriceD, WongPC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107: 16325–16330.

21. ZhouH, HuangC, ChenH, WangD, LandelCP, et al. (2010) Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene. PLoS Genet 6: e1000887.

22. FieselFC, VoigtA, WeberSS, Van den HauteC, WaldenmaierA, et al. (2010) Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 29: 209–221.

23. BarmadaSJ, SkibinskiG, KorbE, RaoEJ, WuJY, et al. (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30: 639–649.

24. SwarupV, PhaneufD, DupreN, PetriS, StrongM, et al. (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med 208: 2429–2447.

25. BoseJK, HuangCC, ShenCK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286: 44441–44448.

26. Lagier-TourenneC, PolymenidouM, HuttKR, VuAQ, BaughnM, et al. (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15: 1488–1497.

27. SchmidB, HruschaA, HoglS, Banzhaf-StrathmannJ, StreckerK, et al. (2013) Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proc Natl Acad Sci USA 110: 4986–4991.

28. SerioA, BilicanB, BarmadaSJ, AndoDM, ZhaoC, et al. (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci USA 110: 4697–4702.

29. KimHJ, RaphaelAR, LaDowES, McGurkL, WeberRA, et al. (2014) Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46: 152–160.

30. YangC, WangH, QiaoT, YangB, AliagaL, et al. (2014) Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 111: E1121–1129.

31. AlamiNH, SmithRB, CarrascoMA, WilliamsLA, WinbornCS, et al. (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81: 536–543.

32. AustinJA, WrightGSA, WatanabeS, GrossmannJG, AntonyukSV, et al. (2014) Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc Natl Acad Sci USA 111: 4309–4314.

33. HeF, KransA, FreibaumBD, TaylorJP, ToddPK (2014) TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Hum Mol Genet 23: 5036–5051.

34. GallowayJN, ShawC, YuP, ParghiD, PoidevinM, et al. (2014) CGG repeats in RNA modulate expression of TDP-43 in mouse and fly models of fragile X tremor ataxia syndrome. Hum Mol Genet E-pub ahead of print. Doi:10.1093/hmg/ddu314.

35. DreyfussG, MatunisMJ, Pinol-RomaS, BurdCG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289–321.

36. BurattiE, BaralleFE (2012) TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem Sci 37: 237–247.

37. Lagier-TourenneC, PolymenidouM, ClevelandDW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19: R46–64.

38. AbhyankarMM, UrekarC, ReddiPP (2007) A Novel CpG-free Vertebrate Insulator Silences the Testis-specific SP-10 Gene in Somatic Tissues. J Biol Chem 282: 36143–36154.

39. OuS, WuF, HarrichD, Garcia-MartinezL, GaynorR (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69: 3584–3596.

40. BoseJK, WangI-F, HungL, TarnW-Y, ShenC-KJ (2008) TDP-43 Overexpression Enhances Exon 7 Inclusion during the Survival of Motor Neuron Pre-mRNA Splicing. J Biol Chem 283: 28852–28859.

41. MercadoPA, AyalaYM, RomanoM, BurattiE, BaralleFE (2005) Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 33: 6000–6010.

42. StrongMJ, VolkeningK, HammondR, YangW, StrongW, et al. (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35: 320–327.

43. VolkeningK, Leystra-LantzC, YangW, JaffeeH, StrongMJ (2009) Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305: 168–182.

44. KawaharaY, Mieda-SatoA (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci USA 109: 3347–3352.

45. KingOD, GitlerAD, ShorterJ (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462: 61–80.

46. KwiatkowskiTJJr, BoscoDA, LeClercAL, TamrazianE, VanderburgCR, et al. (2009) Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science 323: 1205–1208.

47. VanceC, RogeljB, HortobagyiT, De VosKJ, NishimuraAL, et al. (2009) Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science 323: 1208–1211.

48. KimHJ, KimNC, WangYD, ScarboroughEA, MooreJ, et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467–473.

49. DeweyCM, CenikB, SephtonCF, DriesDR, MayerP3rd, et al. (2011) TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 31: 1098–1108.

50. McDonaldKK, AulasA, DestroismaisonsL, PicklesS, BeleacE, et al. (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20: 1400–1410.

51. Liu-YesucevitzL, BilgutayA, ZhangYJ, VanderwydeT, CitroA, et al. (2010) Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5: e13250.

52. GalJ, ZhangJ, KwinterDM, ZhaiJ, JiaH, et al. (2011) Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 32: 2323 e2327–2340.

53. BoscoDA, LemayN, KoHK, ZhouH, BurkeC, et al. (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19: 4160–4175.

54. GuilS, LongJC, CaceresJF (2006) hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 26: 5744–5758.

55. ZhangT, HwangHY, HaoH, TalbotCJr, WangJ (2012) Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. J Biol Chem 287: 8371–8382.

56. VaccaroA, TauffenbergerA, AshPE, CarlomagnoY, PetrucelliL, et al. (2012) TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. PLoS Genet 8: e1002806.

57. SalihDA, BrunetA (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20: 126–136.

58. BerrymanDE, ChristiansenJS, JohannssonG, ThornerMO, KopchickJJ (2008) Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 18: 455–471.

59. MurphyCT, McCarrollSA, BargmannCI, FraserA, KamathRS, et al. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283.

60. ZhangT, MullanePC, PerizG, WangJ (2011) TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Hum Mol Genet 20: 1952–1965.

61. AlfieriRR, PetroniniPG (2007) Hyperosmotic stress response: comparison with other cellular stresses. Pflugers Arch 454: 173–185.

62. BurkewitzK, ChoeK, StrangeK (2011) Hypertonic stress induces rapid and widespread protein damage in C. elegans. Am J Physiol Cell Physiol 301: C566–576.

63. ChoeKP, StrangeK (2008) Genome-wide RNAi screen and in vivo protein aggregation reporters identify degradation of damaged proteins as an essential hypertonic stress response. Am J Physiol Cell Physiol 295: C1488–1498.

64. NunesP, ErnandezT, RothI, QiaoX, StrebelD, et al. (2013) Hypertonic stress promotes autophagy and microtubule-dependent autophagosomal clusters. Autophagy 9: 550–567.

65. WangJ, FarrG, HallD, LiF, FurtakK, et al. (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5: e1000350.

66. TzivionG, DobsonM, RamakrishnanG (2011) FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813: 1938–1945.

67. van der HorstA, de Vries-SmitsAM, BrenkmanAB, van TriestMH, van den BroekN, et al. (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8: 1064–1073.

68. TourriereH, ChebliK, ZekriL, CourselaudB, BlanchardJM, et al. (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160: 823–831.

69. RenaG, PrescottAR, GuoS, CohenP, UntermanTG (2001) Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J 354: 605–612.

70. BrunetA, KanaiF, StehnJ, XuJ, SarbassovaD, et al. (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156: 817–828.

71. ObsilovaV, VecerJ, HermanP, PabianovaA, SulcM, et al. (2005) 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44: 11608–11617.

72. MammucariC, MilanG, RomanelloV, MasieroE, RudolfR, et al. (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458–471.

73. ZhaoJ, BraultJJ, SchildA, GoldbergAL (2008) Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 4: 378–380.

74. van der VosKE, EliassonP, Proikas-CezanneT, VervoortSJ, van BoxtelR, et al. (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14: 829–837.

75. WangJ, SluntH, GonzalesV, FromholtD, CoonfieldM, et al. (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12: 2753–2764.

76. KedershaN, AndersonP (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431: 61–81.

77. ZhaoY, YangJ, LiaoW, LiuX, ZhangH, et al. (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12: 665–675.

78. EijkelenboomA, BurgeringBM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14: 83–97.

79. MelloCC, KramerJM, StinchcombD, AmbrosV (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J 10: 3959–3970.

80. BrunetA, BonniA, ZigmondMJ, LinMZ, JuoP, et al. (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#