-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Basement Membrane and Cell Integrity of Self-Tissues in Maintaining Immunological Tolerance
Autoimmune diseases may be caused by failures in the immune system or by altered selfness in target tissues; however, which of these is more critical is controversial. To better understand such diseases, it is necessary to first define the molecular mechanisms that provide self-tolerance to healthy tissues. As a model system, we used Drosophila melanotic mass formation, in which blood cells encapsulate degenerating self-tissues. By manipulating basement-membrane components specifically in target tissues, not in blood cells, we could elicit autoimmune responses against the altered self-tissues. Moreover, we found that at least two different checkpoints for self-tolerance operate discretely in Drosophila tissues. This parallels mammalian immunity and provides etiological insight into certain autoimmune diseases in which structural abnormalities precede immune system pathology, such as Sjögren's syndrome and type I diabetes mellitus.
Vyšlo v časopise: Basement Membrane and Cell Integrity of Self-Tissues in Maintaining Immunological Tolerance. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004683
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004683Souhrn
Autoimmune diseases may be caused by failures in the immune system or by altered selfness in target tissues; however, which of these is more critical is controversial. To better understand such diseases, it is necessary to first define the molecular mechanisms that provide self-tolerance to healthy tissues. As a model system, we used Drosophila melanotic mass formation, in which blood cells encapsulate degenerating self-tissues. By manipulating basement-membrane components specifically in target tissues, not in blood cells, we could elicit autoimmune responses against the altered self-tissues. Moreover, we found that at least two different checkpoints for self-tolerance operate discretely in Drosophila tissues. This parallels mammalian immunity and provides etiological insight into certain autoimmune diseases in which structural abnormalities precede immune system pathology, such as Sjögren's syndrome and type I diabetes mellitus.
Zdroje
1. TakeuchiO, AkiraS (2010) Pattern Recognition Receptors and Inflammation. Cell 140 : 805–820.
2. MedzhitovR, Preston-HurlburtP, JanewayCAJr (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388 : 394–397.
3. Marshak-RothsteinA, RifkinIR (2007) Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol 25 : 419–441.
4. WatsonKL, JohnsonTK, DenellRE (1991) Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Developmental Genetics 12 : 173–187.
5. QiuP, PanPC, GovindS (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125 : 1909–1920.
6. MinakhinaS, StewardR (2006) Melanotic mutants in Drosophila: Pathways and phenotypes. Genetics 174 : 253–263.
7. RizkiRM, RizkiTM (1984) Selective destruction of a host blood cell type by a parasitoid wasp. Proceedings of the National Academy of Sciences of the United States of America 81 : 6154–6158.
8. MeisterM (2004) Blood cells of Drosophila: Cell lineages and role in host defence. Current Opinion in Immunology 16 : 10–15.
9. RizkiRM, RizkiTM (1974) Basement membrane abnormalities in melanotic tumor formation of Drosophila. Experientia 30 : 543–546.
10. RizkiTM, RizkiRM (1980) Developmental analysis of a temperature-sensitive melanotic tumor mutant in Drosophila melanogaster. Wilhelm Roux's Archives of Developmental Biology 189 : 197–206.
11. RizkiRM, RizkiTM (1980) Hemocyte responses to implanted tissues in Drosophila melanogaster larvae. Wilhelm Roux's Archives of Developmental Biology 189 : 207–213.
12. RodriguezA, ZhouZ, TangML, MellerS, ChenJ, et al. (1996) Identification of immune system and responses genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster. Genetics 143 : 929–940.
13. HenchcliffeC, Garcia-AlonsoL, TangJ, GoodmanCS (1993) Genetic analysis of laminin A reveals diverse functions during morphogenesis in Drosophila. Development 118 : 325–337.
14. UrbanoJM, TorglerCN, MolnarC, TepassU, López-VareaA, et al. (2009) Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development 136 : 4165–4176.
15. WolfstetterG, HolzA (2012) The role of LamininB2 (LanB2) during mesoderm differentiation in Drosophila. Cellular and Molecular Life Sciences 69 : 267–282.
16. MartinD, ZusmanS, LiX, WilliamsEL, KhareN, et al. (1999) wing blister, a new Drosophila laminin alpha chain required for cell adhesion and migration during embryonic and imaginal development. Journal of Cell Biology 145 : 191–201.
17. BabcockDT, BrockAR, FishGS, WangY, PerrinL, et al. (2008) Circulating blood cells function as a surveillance system for damaged tissue in Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America 105 : 10017–10022.
18. Pastor-ParejaJC, MingW, TianX (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. DMM Disease Models and Mechanisms 1 : 144–154.
19. PaddibhatlaI, LeeMJ, KalamarzME, FerrareseR, GovindS (2010) Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathogens 6: e1001234.
20. SasakiT, FässlerR, HohenesterE (2004) Laminin: The crux of basement membrane assembly. Journal of Cell Biology 164 : 959–963.
21. YurchencoPD (2011) Basement membranes: Cell scaffoldings and signaling platforms. Cold Spring Harbor Perspectives in Biology 3 : 1–27.
22. ColognatoH, YurchencoPD (2000) Form and function: The laminin family of heterotrimers. Developmental Dynamics 218 : 213–234.
23. NatzleJE, MonsonJM, McCarthyBJ (1982) Cytogenetic location and expression of collagen-like genes in Drosophila. Nature 296 : 368–371.
24. YasothornsrikulS, DavisWJ, CramerG, KimbrellDA, DearolfCR (1997) viking: identification and characterization of a second type IV collagen in Drosophila. Gene 198 : 17–25.
25. MontellDJ, GoodmanCS (1988) Drosophila substrate adhesion molecule: sequence of laminin B1 chain reveals domains of homology with mouse. Cell 53 : 463–473.
26. Pastor-ParejaJ, XuT (2011) Shaping Cells and Organs in Drosophila by Opposing Roles of Fat Body-Secreted Collagen IV and Perlecan. Developmental Cell 21 : 245–256.
27. Kusche-GullbergM, GarrisonK, MacKrellAJ, FesslerLI, FesslerJH (1992) Laminin A chain: expression during Drosophila development and genomic sequence. The EMBO Journal 11 : 4519–4527.
28. Avet-RochexA, BoyerK, PoleselloC, GobertV, OsmanD, et al. (2010) An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC Developmental Biology 10 : 65.
29. HarrisonDA, BinariR, NahreiniTS, GilmanM, PerrimonN (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. The EMBO Journal 14 : 2857–2865.
30. LuoH, RoseP, BarberD, HanrattyWP, LeeS, et al. (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Molecular and Cellular Biology 17 : 1562–1571.
31. EvansCJ, HartensteinV, BanerjeeU (2003) Thicker than blood: Conserved mechanisms in Drosophila and vertebrate hematopoiesis. Developmental Cell 5 : 673–690.
32. BrownS, HuN, Castelli-Gair HombriaJ (2001) Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Current Biology 11 : 1700–1705.
33. LuoH, RoseP, RobertsT, DearolfC (2002) The Hopscotch Jak kinase requires the Raf pathway to promote blood cell activation and differentiation in Drosophila. Molecular Genetics and Genomics 267 : 57–63.
34. HuangL, OhsakoS, TandaS (2005) The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Developmental Biology 280 : 407–420.
35. SorrentinoRP, TokusumiT, SchulzRA (2007) The Friend of GATA protein U-shaped functions as a hematopoietic tumor suppressor in Drosophila. Developmental Biology 311 : 311–323.
36. MarkovicMP, KylstenP, DushayMS (2009) Drosophila lamin mutations cause melanotic mass formation and lamellocyte differentiation. Molecular Immunology 46 : 3245–3250.
37. RizkiTM, RizkiRM (1992) Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Developmental and Comparative Immunology 16 : 103–110.
38. TokusumiT, SorrentinoRP, RussellM, FerrareseR, GovindS, et al. (2009) Characterization of a lamellocyte transcriptional enhancer located within the misshapen gene of Drosophila melanogaster. PLoS ONE 4: e6429.
39. MárkusR, LaurinyeczB, KuruczÉ, HontiV, BajuszI, et al. (2009) Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 106 : 4805–4809.
40. SinenkoSA, Mathey-PrevotB (2004) Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene 23 : 9120–9128.
41. WoodsDF, WuJOW, BryantPJ (1997) Localization of proteins to the apico-lateral junctions of Drosophila epithelia. Developmental Genetics 20 : 111–118.
42. MunroS, FreemanM (2000) The Notch signalling regulator Fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Current Biology 10 : 813–820.
43. WarburgA, ShternA, CohenN, DahanN (2007) Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. Microbes and Infection 9 : 192–199.
44. Salt G (1970) The cellular defence reactions of insects: Cambridge University Press.
45. NacerA, WalkerK, HurdH (2008) Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi. Parasites & Vectors 1 : 33.
46. GoodnowCC (2007) Multistep Pathogenesis of Autoimmune Disease. Cell 130 : 25–35.
47. RasmussenJP, ReddySS, PriessJR (2012) Laminin is required to orient epithelial polarity in the C. elegans pharynx. Development 139 : 2050–2060.
48. PagliariniRA, XuT (2003) A Genetic Screen in Drosophila for Metastatic Behavior. Science 302 : 1227–1231.
49. BilderD (2004) Epithelial polarity and proliferation control: Links from the Drosophila neoplastictumor suppressors. Genes and Development 18 : 1909–1925.
50. Irving-RodgersHF, ZiolkowskiAF, ParishCR, SadoY, NinomiyaY, et al. (2008) Molecular composition of the peri-islet basement membrane in NOD mice: A barrier against destructive insulitis. Diabetologia 51 : 1680–1688.
51. KorposE, KadriN, KappelhoffR, WegnerJ, OverallCM, et al. (2013) The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 62 : 531–542.
52. LaineM, VirtanenI, SaloT, KonttinenYT (2004) Segment-specific but pathologic laminin isoform profiles in human labial salivary glands of patients with Sjögren's syndrome. Arthritis and Rheumatism 50 : 3968–3973.
53. LaineM, VirtanenI, PorolaP, RotarZ, RozmanB, et al. (2008) Acinar epithelial cell laminin-receptors in labial salivary glands in Sjögren's syndrome. Clinical and Experimental Rheumatology 26 : 807–813.
54. KarreK, LjunggrenHG, PiontekG, KiesslingR (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319 : 675–678.
55. VivierE, RauletDH, MorettaA, CaligiuriMA, ZitvogelL, et al. (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331 : 44–49.
56. AshaH, NagyI, KovacsG, StetsonD, AndoI, et al. (2003) Analysis of ras-induced overproliferation in Drosophila hemocytes. Genetics 163 : 203–215.
57. TokusumiT, ShoueDA, TokusumiY, StollerJR, SchulzRA (2009) New hemocyte-specific enhancer-reporter transgenes for the analysis of hematopoiesis in Drosophila. Genesis 47 : 771–774.
58. GronkeS, BellerM, FellertS, RamakrishnanH, JackleH, et al. (2003) Control of fat storage by a Drosophila PAT domain protein. Current Biology 13 : 603–606.
59. MurrayM, FesslerL, PalkaJ (1995) Changing Distributions of Extracellular Matrix Components during Early Wing Morphogenesis in Drosophila. Developmental biology 168 : 150–165.
60. FriedrichMVK, SchneiderM, TimplR, BaumgartnerS (2000) Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression. European Journal of Biochemistry 267 : 3149–3159.
61. WolfstetterG, ShirinianM, StuteC, GrabbeC, HummelT, et al. (2009) Fusion of circular and longitudinal muscles in Drosophila is independent of the endoderm but further visceral muscle differentiation requires a close contact between mesoderm and endoderm. Mechanisms of Development 126 : 721–736.
62. KuruczE, ZettervallCJ, SinkaR, VilmosP, PivarcsiA, et al. (2003) Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 100 : 2622–2627.
63. KuruczE, VácziB, MárkusR, LaurinyeczB, VilmosP, et al. (2007) Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biologica Hungarica 58 : 95–111.
64. DuvicB, HoffmannJA, MeisterM, RoyetJ (2002) Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Current Biology 12 : 1923–1927.
Štítky
Genetika Reprodukčná medicína
Článek Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 LociČlánek The Kinesin AtPSS1 Promotes Synapsis and is Required for Proper Crossover Distribution in MeiosisČlánek Payoffs, Not Tradeoffs, in the Adaptation of a Virus to Ostensibly Conflicting Selective PressuresČlánek Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome ReductionČlánek BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian SkinČlánek Role of STN1 and DNA Polymerase α in Telomere Stability and Genome-Wide Replication in ArabidopsisČlánek RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress ResponseČlánek Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping StudiesČlánek Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation inČlánek Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice ( L.) SeedlingsČlánek Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK PathwayČlánek Signature Gene Expression Reveals Novel Clues to the Molecular Mechanisms of Dimorphic Transition inČlánek A Mouse Model Uncovers LKB1 as an UVB-Induced DNA Damage Sensor Mediating CDKN1A (p21) DegradationČlánek Dominant Sequences of Human Major Histocompatibility Complex Conserved Extended Haplotypes from to
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 10- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- An Deletion Is Highly Associated with a Juvenile-Onset Inherited Polyneuropathy in Leonberger and Saint Bernard Dogs
- Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1
- Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci
- Basement Membrane and Cell Integrity of Self-Tissues in Maintaining Immunological Tolerance
- The Kinesin AtPSS1 Promotes Synapsis and is Required for Proper Crossover Distribution in Meiosis
- Germline Mutations in Are Associated with Familial Gastric Cancer
- POT1a and Components of CST Engage Telomerase and Regulate Its Activity in
- Controlling Meiotic Recombinational Repair – Specifying the Roles of ZMMs, Sgs1 and Mus81/Mms4 in Crossover Formation
- Payoffs, Not Tradeoffs, in the Adaptation of a Virus to Ostensibly Conflicting Selective Pressures
- FHIT Suppresses Epithelial-Mesenchymal Transition (EMT) and Metastasis in Lung Cancer through Modulation of MicroRNAs
- Genome-Wide Mapping of Yeast RNA Polymerase II Termination
- Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction
- White Cells Facilitate Opposite- and Same-Sex Mating of Opaque Cells in
- BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian Skin
- Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation
- COE Loss-of-Function Analysis Reveals a Genetic Program Underlying Maintenance and Regeneration of the Nervous System in Planarians
- Fat-Dachsous Signaling Coordinates Cartilage Differentiation and Polarity during Craniofacial Development
- Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse
- Sensors at Centrosomes Reveal Determinants of Local Separase Activity
- Genes Integrate and Hedgehog Pathways in the Second Heart Field for Cardiac Septation
- Systematic Dissection of Coding Exons at Single Nucleotide Resolution Supports an Additional Role in Cell-Specific Transcriptional Regulation
- Recovery from an Acute Infection in Requires the GATA Transcription Factor ELT-2
- HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst
- Role of and in Development of Abdominal Epithelia Breaks Posterior Prevalence Rule
- The Formation of Endoderm-Derived Taste Sensory Organs Requires a -Dependent Expansion of Embryonic Taste Bud Progenitor Cells
- Role of STN1 and DNA Polymerase α in Telomere Stability and Genome-Wide Replication in Arabidopsis
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- Encodes the Catalytic Subunit of N Alpha-Acetyltransferase that Regulates Development, Metabolism and Adult Lifespan
- Disruption of SUMO-Specific Protease 2 Induces Mitochondria Mediated Neurodegeneration
- Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in
- It's All in Your Mind: Determining Germ Cell Fate by Neuronal IRE-1 in
- A Conserved Role for Homologs in Protecting Dopaminergic Neurons from Oxidative Stress
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- An AGEF-1/Arf GTPase/AP-1 Ensemble Antagonizes LET-23 EGFR Basolateral Localization and Signaling during Vulva Induction
- The Proteomic Landscape of the Suprachiasmatic Nucleus Clock Reveals Large-Scale Coordination of Key Biological Processes
- RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response
- A Complex Genetic Switch Involving Overlapping Divergent Promoters and DNA Looping Regulates Expression of Conjugation Genes of a Gram-positive Plasmid
- ZTF-8 Interacts with the 9-1-1 Complex and Is Required for DNA Damage Response and Double-Strand Break Repair in the Germline
- Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies
- Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment
- Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in
- Telomeric (s) in spp. Encode Mediator Subunits That Regulate Distinct Virulence Traits
- Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice ( L.) Seedlings
- Ancient Expansion of the Hox Cluster in Lepidoptera Generated Four Homeobox Genes Implicated in Extra-Embryonic Tissue Formation
- Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ
- A Mutation in the Mouse Gene Leads to Impaired Hedgehog Signaling
- Keeping mtDNA in Shape between Generations
- Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis
- TIF-IA-Dependent Regulation of Ribosome Synthesis in Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth
- At Short Telomeres Tel1 Directs Early Replication and Phosphorylates Rif1
- Evidence of a Bacterial Receptor for Lysozyme: Binding of Lysozyme to the Anti-σ Factor RsiV Controls Activation of the ECF σ Factor σ
- Hsp40s Specify Functions of Hsp104 and Hsp90 Protein Chaperone Machines
- Feeding State, Insulin and NPR-1 Modulate Chemoreceptor Gene Expression via Integration of Sensory and Circuit Inputs
- Functional Interaction between Ribosomal Protein L6 and RbgA during Ribosome Assembly
- Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in
- Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback
- Mmp1 Processing of the PDF Neuropeptide Regulates Circadian Structural Plasticity of Pacemaker Neurons
- The Nuclear Immune Receptor Is Required for -Dependent Constitutive Defense Activation in
- Genetic Modifiers of Neurofibromatosis Type 1-Associated Café-au-Lait Macule Count Identified Using Multi-platform Analysis
- Juvenile Hormone-Receptor Complex Acts on and to Promote Polyploidy and Vitellogenesis in the Migratory Locust
- Uncovering Enhancer Functions Using the α-Globin Locus
- The Analysis of Mutant Alleles of Different Strength Reveals Multiple Functions of Topoisomerase 2 in Regulation of Chromosome Structure
- Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway
- The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in
- The DAF-16 FOXO Transcription Factor Regulates to Modulate Stress Resistance in , Linking Insulin/IGF-1 Signaling to Protein N-Terminal Acetylation
- Genetic Influences on Translation in Yeast
- Analysis of Mutants Defective in the Cdk8 Module of Mediator Reveal Links between Metabolism and Biofilm Formation
- Ribosomal Readthrough at a Short UGA Stop Codon Context Triggers Dual Localization of Metabolic Enzymes in Fungi and Animals
- Gene Duplication Restores the Viability of Δ and Δ Mutants
- Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 ()
- Break-Induced Replication Requires DNA Damage-Induced Phosphorylation of Pif1 and Leads to Telomere Lengthening
- Dynamic Partnership between TFIIH, PGC-1α and SIRT1 Is Impaired in Trichothiodystrophy
- Signature Gene Expression Reveals Novel Clues to the Molecular Mechanisms of Dimorphic Transition in
- Mutations in Moderate or Severe Intellectual Disability
- Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex
- A Role for Taiman in Insect Metamorphosis
- The Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5′-UTR Variant
- MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants
- Coexistence and Within-Host Evolution of Diversified Lineages of Hypermutable in Long-term Cystic Fibrosis Infections
- Comprehensive Mapping of the Flagellar Regulatory Network
- Topoisomerase II Is Required for the Proper Separation of Heterochromatic Regions during Female Meiosis
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress
- H2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by Coordinating Rad53 Activation and Chromatin Assembly
- Copy Number Variation in the Horse Genome
- Unifying Genetic Canalization, Genetic Constraint, and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in
- Spinster Homolog 2 () Deficiency Causes Early Onset Progressive Hearing Loss
- Genome-Wide Discovery of Drug-Dependent Human Liver Regulatory Elements
- Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in
- Protein Phosphatase 4 Promotes Chromosome Pairing and Synapsis, and Contributes to Maintaining Crossover Competence with Increasing Age
- The bHLH-PAS Transcription Factor Dysfusion Regulates Tarsal Joint Formation in Response to Notch Activity during Leg Development
- A Mouse Model Uncovers LKB1 as an UVB-Induced DNA Damage Sensor Mediating CDKN1A (p21) Degradation
- Notch3 Interactome Analysis Identified WWP2 as a Negative Regulator of Notch3 Signaling in Ovarian Cancer
- An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development
- Dominant Sequences of Human Major Histocompatibility Complex Conserved Extended Haplotypes from to
- The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport
- A Gain-of-Function Mutation in Impeded Bone Development through Increasing Expression in DA2B Mice
- Nephronophthisis-Associated Regulates Cell Cycle Progression, Apoptosis and Epithelial-to-Mesenchymal Transition
- Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex
- The Not5 Subunit of the Ccr4-Not Complex Connects Transcription and Translation
- Abnormal Dosage of Ultraconserved Elements Is Highly Disfavored in Healthy Cells but Not Cancer Cells
- Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria
- The Chromosomal Association of the Smc5/6 Complex Depends on Cohesion and Predicts the Level of Sister Chromatid Entanglement
- Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy