#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in


Integration of prophages into protein-coding sequences of the host chromosome generally results in loss of function of the interrupted gene. In the endospore-forming organism Bacillus subtilis strain 168, the SPβ prophage is inserted into a previously-uncharacterized spore polysaccharide synthesis gene, spsM. In vegetative cells, the lytic cycle is induced in response to DNA damage. In the process, SPβ is excised from the genome to form phage particles. Here, we demonstrate that SPβ excision is also a developmentally-regulated event that occurs systematically during sporulation to reconstitute a functional spsM gene. Following asymmetric division of the sporulating cell, two cellular compartments are generated, the forespore, which will mature into a spore, and the mother cell, which is essential to the process of spore maturation. Because phage excision is limited to the mother cell genome, and does not occur in the forespore genome, SPβ is an integral part of the spore genome. Thus, after the spores germinate, the vegetative cells resume growth and the SPβ prophage is propagated vertically to the progeny along with the rest of the host genome. Our results suggest that the two pathways of SPβ excision support both the phage life cycle and normal sporulation of the host cells.


Vyšlo v časopise: Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004636
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004636

Souhrn

Integration of prophages into protein-coding sequences of the host chromosome generally results in loss of function of the interrupted gene. In the endospore-forming organism Bacillus subtilis strain 168, the SPβ prophage is inserted into a previously-uncharacterized spore polysaccharide synthesis gene, spsM. In vegetative cells, the lytic cycle is induced in response to DNA damage. In the process, SPβ is excised from the genome to form phage particles. Here, we demonstrate that SPβ excision is also a developmentally-regulated event that occurs systematically during sporulation to reconstitute a functional spsM gene. Following asymmetric division of the sporulating cell, two cellular compartments are generated, the forespore, which will mature into a spore, and the mother cell, which is essential to the process of spore maturation. Because phage excision is limited to the mother cell genome, and does not occur in the forespore genome, SPβ is an integral part of the spore genome. Thus, after the spores germinate, the vegetative cells resume growth and the SPβ prophage is propagated vertically to the progeny along with the rest of the host genome. Our results suggest that the two pathways of SPβ excision support both the phage life cycle and normal sporulation of the host cells.


Zdroje

1. TonegawaS (1983) Somatic generation of antibody diversity. Nature 302: 575–581 doi:10.1038/302575a0

2. GoldenJW, RobinsonSJ, HaselkornR (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature 314: 419–423 doi:10.1038/314419a0

3. GoldenJW, MulliganME, HaselkornR (1987) Different recombination site specificity of two developmentally regulated genome rearrangements. Nature 327: 526–529 doi:10.1038/327526a0

4. CarrascoCD, BuettnerJA, GoldenJW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92: 791–795 doi:10.1073/pnas.92.3.791

5. RamaswamyKS, CarrascoCD, FatmaT, GoldenJW (1997) Cell-type specificity of the Anabaena fdxN-element rearrangement requires xisH and xisI. Mol Microbiol 23: 1241–1249 doi:10.1046/j.1365-2958.1997.3081671.x

6. StragierP, KunkelB, KroosL, LosickR (1989) Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243: 507–512 doi:10.1126/science.2536191

7. DriksA (2004) The Bacillus spore coat. Phytopathology 94: 1249–1251 doi:10.1094/PHYTO.2004.94.11.1249

8. McKenneyPT, DriksA, EichenbergerP (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11: 33–44 doi:10.1038/nrmicro2921

9. McKenneyPT, DriksA, EskandarianHA, GrabowskiP, GubermanJ, et al. (2010) A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20: 934–938 doi:10.1016/j.cub.2010.03.060

10. ImamuraD, KuwanaR, TakamatsuH, WatabeK (2011) Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 193: 4075–4080 doi:10.1128/JB.05310-11

11. LosickR, StragierP (1992) Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355: 601–604 doi:10.1038/355601a0

12. RudnerDZ, LosickR (2001) Morphological coupling in development: lessons from prokaryotes. Dev Cell 1: 733–742 doi:10.1016/S1534-5807(01)00094-6

13. HigginsD, DworkinJ (2012) Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 36: 131–148 doi:10.1111/j.1574-6976.2011.00310.x

14. SatoT, SamoriY, KobayashiY (1990) The cisA cistron of Bacillus subtilis sporulation gene spoIVC encodes a protein homologous to a site-specific recombinase. J Bacteriol 172: 1092–1098.

15. PophamDL, StragierP (1992) Binding of the Bacillus subtilis spoIVCA product to the recombination sites of the element interrupting the σK-encoding gene. Proc Natl Acad Sci USA 89: 5991–5995 doi:10.1073/pnas.89.13.5991

16. SatoT, HaradaK, OhtaY, KobayashiY (1994) Expression of the Bacillus subtilis spoIVCA gene, which encodes a site-specific recombinase, depends on the spoIIGB product. J Bacteriol 176: 935–937.

17. HaraldsenJD, SonensheinAL (2003) Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol Microbiol 48: 811–821 doi:10.1046/j.1365-2958.2003.03471.x

18. AbeK, YoshinariA, AoyagiT, HirotaY, IwamotoK, et al. (2013) Regulated DNA rearrangement during sporulation in Bacillus weihenstephanensis KBAB4. Mol Microbiol 90: 415–427 doi:10.1111/mmi.12375

19. KunstF, OgasawaraN, MoszerI, AlbertiniAM, AlloniG, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256 doi:10.1038/36786

20. EichenbergerP, FujitaM, JensenST, ConlonEM, RudnerDZ, et al. (2004) The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2: e328 doi:10.1371/journal.pbio.0020328

21. SteilL, SerranoM, HenriquesAO, VölkerU (2005) Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151: 399–420 doi:10.1099/mic.0.27493-0

22. NicolasP, MäderU, DervynE, RochatT, LeducA, et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335: 1103–1106 doi:10.1126/science.1206848

23. LazarevicV, DüsterhöftA, SoldoB, HilbertH, MauëlC, et al. (1999) Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPβc2. Microbiology 145: 1055–1067 doi:10.1099/13500872-145-5-1055

24. LinWS, CunneenT, LeeCY (1994) Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysachcaride in Staphylococcus aureus. J Bacteriol 176: 7005–7016.

25. FryBN, KorolikV, ten BrinkeJA, PenningsMT, ZalmR, et al. (1998) The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology 144: 2049–2061 doi:10.1099/00221287-144-8-2049

26. McLoonAL, GuttenplanSB, KearnsDB, KolterR, LosickR (2011) Tracing the domesticatin of a biofilm-forming bacterium. J Bacteriol 193: 2027–2034 doi:10.1128/JB.01542-10

27. WarnerFD, KitosGA, RomanoMP, HemphillHE (1977) Characterization of SPβ: a temperate bacteriophage from Bacillus subtilis 168M. Can J Microbiol 23: 45–51 doi:10.1139/m77-006

28. VagnerV, DervynE, EhrlichSD (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144: 3097–3104 doi:10.1099/00221287-144-11-3097

29. SaccoM, RiccaE, LosickR, CuttingS (1995) An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J Bacteriol 177: 372–377.

30. SierroN, MakitaY, de HoonM, NakaiK (2008) DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36: D93–D96 doi:10.1093/nar/gkm910

31. AuckenHM, WilkinsonSG, PittTL (1997) Identification of capsular antigens in Serratia marcescens. J Clin Microbiol 35: 59–63.

32. HammerschmidtS, WolffS, HockeA, RosseauS, MüllerE, et al. (2005) Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73: 4653–4667 doi:10.1128/IAI.73.8.4653-4667.2005

33. WunschelD, FoxKF, BlackGE, FoxA (1994) Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and ribosomal RNA spacer region PCR. Syst Appl Microbiol 17: 625–635 doi:10.1016/S0723-2020(11)80085-8

34. PlataG, FuhrerT, HsiaoTL, SauerU, VitkupD (2012) Global probabilistic annotation of metabolic networks enables enzyme discovery. Nat Chem Biol 8: 848–854 doi:10.1038/nchembio.1063

35. TakemaruK, MizunoM, SatoT, TakeuchiM, KobayashiY (1995) Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141: 323–327 doi:10.1099/13500872-141-2-323

36. KunkelB, LosickR, StragierP (1990) The Bacillus subtilis gene for the development transcription factor σK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev 4: 525–535 doi:10.1101/gad.4.4.525

37. LuS, HalbergR, KrossL (1990) Processing of the mother-cell σ factor, σK, may depend on events occurring in the forespore during Bacillus subtilis development. Proc Natl Acad Sci USA 87: 9722–9726.

38. PaikSH, ChakicherlaA, HansenJN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273: 23134–23142 doi:10.1074/jbc.273.36.23134

39. MatsuokaS, AraiT, MurayamaR, KawamuraF, AsaiK, et al. (2004) Identification of the nonA and nonB loci of Bacillus subtilis Marburg permitting the growth of SP10 phage. Genes Genet Syst 79: 311–317 doi:10.1266/ggs.79.311

40. YeeLM, MatsuokaS, YanoK, SadaieY, AsaiK (2011) Inhibitory effect of prophage SPβ fragments on phage SP10 ribonucleotide reductase function and its multiplication in Bacillus subtilis. Genes Genet Syst 86: 7–18 doi:10.1266/ggs.86.7

41. YamamotoT, ObanaN, YeeLM, AsaiK, NomuraN, et al. (2014) SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on prophage SPβ region of Bacillus subtilis genome. J Bacteriol 196: 693–706 doi:10.1128/JB.01240-13

42. RabinovichL, SigalN, BorovokI, Nir-PazR, HerskovitsAA (2012) Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150: 792–802 doi:10.1016/j.cell.2012.06.036

43. LewisJA, HatfullGF (2001) Control of directionality in integarse-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 29: 2205–2216 doi:10.1093/nar/29.11.2205

44. MatzLL, BeamanTC, GerhardP (1970) Chemical composition of exosporium from spores of Bacillus cereus. J Bacteriol 10: 196–201.

45. FoxA, StewartGC, WallerLN, FoxKF, HarleyWM, et al. (2003) Carbohydrates and glycoproteins of Bacillus anthracis and related Bacilli: targets for biodetection. J Microbiol Methods 54: 143–152 doi:10.1016/S0167-7012(03)00095-2

46. ZhangJ, Fitz-JamesPC, AronsonAI (1993) Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175: 3757–3766.

47. Harwood CR, Cutting SS. (1990) Molecular Biological Methods for Bacillus. Chichester: John Wiley & Sons Ltd.

48. MurakamiT, HagaK, TakeuchiM, SatoT (2002) Analysis of the Bacillus subtilis spoIIIJ Gene and Its Paralogue Gene, yqjG. J Bacteriol 184: 1998–2004 doi:10.1128/JB.184.7.1998-2004.2002

49. MasonJM, HackettRH, SetlowP (1988) Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. J Bacteriol 170: 239–244.

50. Miller JM. (1972) Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory Press. pp.352–355.

51. AbeK, ObanaN, NakamuraK (2010) Effects of depletion of RNA-binding protein Tex on the expression of toxin genes in Clostridium perfringens. Biosci Biotechnol Biochem 74: 1564–1571 doi:10.1271/bbb.100135

52. KegginsKM, LovettPS, DuvallEJ (1978) Molecular cloning of genetically active fragments of Bacillus DNA in Bacillus subtilis and properties of the vector plasmid pUB110. Proc Natl Acad Sci U S A 75: 1423–1427.

53. HosoyaS, AsaiK, OgasawaraN, TakeuchiM, SatoT (2002) Mutation in yaaT leads to significant inhibition of phosphorelay during sporulation in Bacillus subtilis. J Bacteriol 184: 5545–5553 doi:10.1128/JB.184.20.5545-5553.2002

54. CarreraM, ZandomeniRO, FitzgibbonJ, SagripantiJL (2007) Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J App Microbiol 102: 303–312 doi:10.1111/j.1365-2672.2006.03111.x

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#