#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antimicrobials, Stress and Mutagenesis


Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes, whilst antibiotics are mostly employed by microorganisms. Here we provide a new hypothesis to explain this widespread adoption of antimicrobial peptides. We show that cationic antimicrobial peptides (AMPs) do not increase bacterial mutagenesis, as they do not elicit bacterial stress pathways. Those stress pathways increase the mutation rate when bacteria are treated with antibiotics. Employing AMPs hence seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.


Vyšlo v časopise: Antimicrobials, Stress and Mutagenesis. PLoS Pathog 10(10): e32767. doi:10.1371/journal.ppat.1004445
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004445

Souhrn

Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes, whilst antibiotics are mostly employed by microorganisms. Here we provide a new hypothesis to explain this widespread adoption of antimicrobial peptides. We show that cationic antimicrobial peptides (AMPs) do not increase bacterial mutagenesis, as they do not elicit bacterial stress pathways. Those stress pathways increase the mutation rate when bacteria are treated with antibiotics. Employing AMPs hence seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.


Zdroje

1. World Health Organization (2012) The evolving threat of antimicrobial resistance Options for action. Geneva

2. D'CostaVM, KingCE, KalanL, MorarM, SungWWL, et al. (2011) Antibiotic resistance is ancient. Nature 477: 457–461.

3. ZasloffM (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.

4. KoprivnjakT, PeschelA (2011) Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 68: 2243–2254.

5. LoginFH, BalmandS, Vallier, Vincent-MonegatC, Vigneron, et al. (2011) Antimicrobial peptides keep insect endosymbionts under control. Science 334: 362–365.

6. PerronGG, ZasloffM, BellG (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 273: 251–256.

7. AllenHK, DonatoJ, WangHH, Cloud-HansenK, DaviesJ, et al. (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8: 251–259.

8. RosenbergSM, SheeC, FrischRL, HastingsPJ (2012) Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays 34: 885–892.

9. Al MamunAAM, LombardoM-J, SheeC, LisewskiAM, GonzalezC, et al. (2012) Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338: 1344–1348.

10. BaharogluZ, BlaJ, GutierrezA, LauretiL, CrussardS, et al. (2013) b-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Comm 4: 1610.

11. CirzRT, ChinJK, AndesDR, Crecy-LagardV, CraigWA, et al. (2005) Inhibition of Mutation and Combating the Evolution of Antibiotic Resistance. PLoS Biol 3: e176.

12. HancockREW, SahlH-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24: 1551–1557.

13. BrogdenK (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3: 238–251.

14. RoscheWA, FosterPL (2000) Determining mutation rates in bacterial populations. Methods 20: 4–17.

15. KohanskiM, DePristoM, CollinsJJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37: 311–320.

16. DoThi T, LópezE, Rodríguez-RojasA, Rodríguez-BeltránJ, CouceA, et al. (2011) Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 66: 531–538.

17. OrlénH, HughesD (2006) Weak mutators can drive the evolution of fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 50: 3454–3456.

18. YanH, HancockREW (2001) Synergistic Interactions between Mammalian Antimicrobial Defense Peptides. Antimicrob Agents Chemother 45: 1558–1560.

19. KerenI, WuY, InocencioJ, MulcahyLR, LewisK (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339: 1213–1216.

20. LimoliDH, RockelAB, HostKM, JhaA, KoppBT, et al. (2014) Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections. PLoS Pathog 10: e1004083.

21. WinstelV, LiangC, Sanchez-CarballoP, SteglichM, MunarM, et al. (2013) Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4: 2345.

22. BlázquezJ, CouceA, Rodríguez-BeltránJ, Rodríguez-RojasA (2012) Antimicrobials as promoters of genetic variation. Curr Opin Microbiol 15: 1–9.

23. HermsenR, DerisJB, HwaT (2012) On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci U S A 109: 10775–10780.

24. BaqueroM, GalánJC, TurrientesC, CantónR, CoqueTM, et al. (2005) Increased Mutation Frequencies in Escherichia coli Isolates Harboring extended-Spectrum b-Lactamase. Antimicrob Agents Chemother 49: 4754–4756.

25. HancockREW (2001) Review Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1: 156–164.

26. ItohT, MartinW, NeiM (2002) Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proc Natl Acad Sci U S A 99: 12944–12948.

27. DrakeJW, CharlesworthB, CharlesworthD, CrowJF (1998) Rates of Spontaneous Mutation. Genetics 148: 1667–1686.

28. BuchonN, BroderickN, LemaitreB (2013) Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 11: 615–626.

29. McFall-NgaiM, HadfieldMG, BoschTCG, Carey HV, Domazet-LošoT, et al. (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110: 3229–3236.

30. AlizonS (2009) The Price equation framework to study disease within-host evolution. J Evol Biol 22: 1123–1132.

31. DobsonAJ, PurvesJ, KamyszW, RolffJ (2013) Comparing Selection on S. aureus between Antimicrobial Peptides and Common Antibiotics. PLoS One 8: e76521.

32. AlexanderHK, DayT (2010) Risk factors for the evolutionary emergence of pathogens. J R Soc Interface 7: 1455–1474.

33. MartinG, AguiléeR, RamsayerJ, KaltzO, RonceO, et al. (2013) The probability of evolutionary rescue: towards a quantitative comparison between theory and evolution experiments. Philos Trans R Soc London 368: 20120088.

34. ZaslaverA, BrenA, RonenM, ItzkovitzS, KikoinI, et al. (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3: 623–628.

35. StüdemannA, Noirclerc-SavoyeM, KlauckE, BeckerG, SchneiderD, et al. (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 22: 4111–4120.

36. PfafflM, TichopadA, PrgometC, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26: 509–15.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#